Undergraduate Teaching 2025-26

GT1

GT1

Not logged in. More information may be available... Login via Raven / direct.

Engineering Tripos Part IIB, 4M3: Spanish, 2019-20

Leader

Mr S Bianchi

Lecturer

Mr S Bianchi

Timing and Structure

Michaelmas Term. Course given at Intermediate and Advanced Levels; 7 lectures + 7 seminars + coursework Assessment Coursework / 3 Tasks: 2 written reports, 1 oral presentation / End of week 3 (30%), end of week 5 (30%), end of week 8 (40%)

Prerequisites

Spanish at Intermediate Level

Aims

The aims of the course are to:

  • To advance understanding in Hispanic science and technology, society and culture.
  • To enable all students to consolidate their listening skills and practise their speaking skills in class, while particular emphasis will be put on reading and writing skills outside the class.

Objectives

As specific objectives, by the end of the course students should be able to:

  • be confident in speaking/reading/writing whether in a general or work-related situation;
  • use the language as a tool to improve understanding of technology, society and culture;
  • analyse a topic/an issue in depth, compare all the elements at play, synthesise the major points and make a balanced judgement.

Content

Seminars (7 Lectures, various speakers, subject to changes)

  • La historia de la ciencia y la ingeniería en el Mundo Hispano: desde el pasado precolombino hasta el presente.
  • Principales avances tecnológicos y su impacto en España.
  • La ingeniería y la tecnología en aplicación en la vasta Hispanoamérica.
  • La industria tecnológica y sus desafíos en el Mundo Hispano.
  • Cómo pueden aplicarse las investigaciones a las necesidades de los países hispanos
  • La educación y la ciencia en España.
  • Una proyección hacia el futuro

Material to be announced in lectures.

A list of this year's module talks will be available at http://www.eng.cam.ac.uk/teaching/language/module-lectures.htm

Seminars

Associated with each lecture will be a one-hour seminar. This may be held before the lecture for preparation, or following the lecture for discussion purposes.

Coursework

The students will prepare 3 major pieces of coursework:

  • Two written reports (30% each)
  • Oral presentation (40%)
  • The assignments will be marked for both language and content (50% language, 50% content)

Coursework

Format

Due date

& marks

Coursework activity #1 Report

A structured report of 900 words in the target language.

Learning objective: 

  • Analyse, synthesise and/or critically evaluate a topic presented and discussed in class (topic related to science, technology or the culture of the Spanish-speaking world)
     
  • Express ideas in a logical and articulate manner using a range of structures and expressions appropriate to the task and expected at the level of proficiency in the target language

Individual report (900 words)

Non-anonymously marked

End of week 3

[30%]

Coursework activity #2 Report

A structured report of 900 words in the target language.

Learning objective: 

  • Analyse, synthesise and/or critically evaluate a topic presented and discussed in class (topic related science, technology or the culture of the Spanish-speaking world)
     
  • Express ideas in a logical and articulate manner using a range of structures and expressions appropriate to the task and expected at the level of proficiency in the target language

Individual report (900 words)

Non-anonymously marked

End of week 5

[30%]

Coursework activity #3 Oral presentation

A structured oral presentation (10-15 minutes followed by questions)

Learning objective: 

  • Analyse, synthesise and/or critically evaluate a topic presented and discussed in class (a topic related to science, technology or the culture of the Spanish-speaking world)
     
  • Express ideas in a logical and articulate manner using a range of structures and expressions appropriate to the task and expected at the level of proficiency in the target language

Individual oral presentation (10-15 minutes followed by questions)

Non-anonymously marked

Last session (week 8)

[40%]

 

 

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

P4

Understanding use of technical literature and other information sources.

 
Last modified: 31/05/2019 12:15

Engineering Tripos Part IIA, 3F2: Systems & Control, 2022-23

Module Leader

Prof G Vinnicombe

Lecturer

Prof G Vinnicombe

Lab Leader

Prof G Vinnicombe

Timing and Structure

16 Lectures, Lent Term

Aims

The aims of the course are to:

  • make students familiar with “state-space” methods of modelling and analysing dynamic systems. These methods are extremely important for control engineering, signal processing, and related subjects.

Objectives

As specific objectives, by the end of the course students should be able to:

  • understand what a state-space model is, and how to obtain such a model;
  • relate state-space models to transfer-function models;
  • analyse the behaviour and structure of a state-space model;
  • have some understanding of feedback design using state-space, transfer function and root-locus techniques, and be able to relate them to each other;
  • appreciate the need for and usefulness of state observers, and their role in feedback and other systems.

Content

State-space models (6L)

  • Review of second-year material (linear algebra, transfer functions, poles)
  • Formulation from physical models
  • Linearising nonlinear models
  • Relationship to transfer function matrix (multiple inputs/outputs)
  • Free and forced responses (state-transition matrix convolution, stability)
  • Interconnections of systems

Feedback system design (4L)

  • Review of second-year material (feequency responses, controller structures, objectives of feedback design).
  • The root-locus diagram
  • Routh-Hurwitz criterion (examples of use).

State estimation (3L)

  • Observability.
  • State observer; Oberver design.
  • Connections to Kalman filters, sensor fusion etc.

Control in state-space framework (3L)

  • Controllability.
  • State feedback and pole-placement.
  • Optimal control.
  • State observer combined with state feedback

Examples papers

Paper 1: State-space models - issued in week 3
Paper 2: Root locus - issued in week 5
Paper 3: Observers and state feedback - issued in week 7

Coursework

Inverted pendulum experiment (state feedback). Laboratory report and/or full technical report.

Learning objectives

  • State feedback
  • Pole placement
  • Control design

Practical information:

  • Sessions will take place in EIETL laboratory, on Wednesdays and Fridays of full term
  • Students will find it helpful to read through the lab sheet in advance of carrying out the experiment.).

Full Technical Report:

Students will have the option to submit a Full Technical Report.

Booklists

Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

 
Last modified: 27/01/2023 07:18

Engineering Tripos Part IIA, 3F2: Systems & Control, 2024-25

Module Leader

Prof R Sepulchre

Lecturer

Prof R Sephulchre

Lab Leader

Prof M Smith

Timing and Structure

16 Lectures, Lent Term

Aims

The aims of the course are to:

  • make students familiar with “state-space” methods of modelling and analysing dynamic systems. These methods are extremely important for control engineering, signal processing, and related subjects.

Objectives

As specific objectives, by the end of the course students should be able to:

  • understand what a state-space model is, and how to obtain such a model;
  • relate state-space models to transfer-function models;
  • analyse the behaviour and structure of a state-space model;
  • have some understanding of feedback design using state-space, transfer function and root-locus techniques, and be able to relate them to each other;
  • appreciate the need for and usefulness of state observers, and their role in feedback and other systems.

Content

State-space models (6L)

  • Review of second-year material (linear algebra, transfer functions, poles)
  • Formulation from physical models
  • Linearising nonlinear models
  • Relationship to transfer function matrix (multiple inputs/outputs)
  • Free and forced responses (state-transition matrix convolution, stability)
  • Interconnections of systems

Feedback system design (4L)

  • Review of second-year material (feequency responses, controller structures, objectives of feedback design).
  • The root-locus diagram
  • Routh-Hurwitz criterion (examples of use).

State estimation (3L)

  • Observability.
  • State observer; Oberver design.
  • Connections to Kalman filters, sensor fusion etc.

Control in state-space framework (3L)

  • Controllability.
  • State feedback and pole-placement.
  • Optimal control.
  • State observer combined with state feedback

Examples papers

Paper 1: State-space models - issued in week 3
Paper 2: Root locus - issued in week 5
Paper 3: Observers and state feedback - issued in week 7

Coursework

Inverted pendulum experiment (state feedback). Laboratory report and/or full technical report.

Learning objectives

  • State feedback
  • Pole placement
  • Control design

Practical information:

  • Sessions will take place in EIETL laboratory, on Wednesdays and Fridays of full term
  • Students will find it helpful to read through the lab sheet in advance of carrying out the experiment.).

Full Technical Report:

Students will have the option to submit a Full Technical Report.

Booklists

Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

 
Last modified: 28/10/2024 07:49

Engineering Tripos Part IIA, 3F2: Systems & Control, 2017-18

Module Leader

Dr G Vinnicombe / Dr F Forni

Lecturer

Dr G. Vinnicombe

Lab Leader

Dr T Hughes

Timing and Structure

16 Lectures, Lent Term

Aims

The aims of the course are to:

  • make students familiar with “state-space” methods of modelling and analysing dynamic systems. These methods are extremely important for control engineering, signal processing, and related subjects.

Objectives

As specific objectives, by the end of the course students should be able to:

  • understand what a state-space model is, and how to obtain such a model;
  • relate state-space models to transfer-function models;
  • analyse the behaviour and structure of a state-space model;
  • have some understanding of feedback design using state-space, transfer function and root-locus techniques, and be able to relate them to each other;
  • appreciate the need for and usefulness of state observers, and their role in feedback and other systems.

Content

State-space models (6L)

  • Review of second-year material (linear algebra, transfer functions, poles)
  • Formulation from physical models
  • Linearising nonlinear models
  • Relationship to transfer function matrix (multiple inputs/outputs)
  • Free and forced responses (state-transition matrix convolution, stability)
  • Interconnections of systems

Feedback system design (4L)

  • Review of second-year material (feequency responses, controller structures, objectives of feedback design).
  • The root-locus diagram
  • Routh-Hurwitz criterion (examples of use).

State estimation (3L)

  • Observability.
  • State observer; Oberver design.
  • Connections to Kalman filters, sensor fusion etc.

Control in state-space framework (3L)

  • Controllability.
  • State feedback and pole-placement.
  • Optimal control.
  • State observer combined with state feedback

Examples papers

Paper 1: State-space models - issued in week 3
Paper 2: Root locus - issued in week 5
Paper 3: Observers and state feedback - issued in week 7

Coursework

Inverted pendulum experiment (state feedback). Laboratory report and/or full technical report.

Ball and beam experiment (state trajectories, nonlinear control). Laboratory report only.

Learning objectives

  • State feedback
  • Pole placement
  • Control design

Practical information:

  • Sessions will take place in EIETL laboratory, on Wednesdays and Fridays of full term
  • Students will find it helpful to read through the lab sheet in advance of carrying out the experiment.).

Full Technical Report:

Students will have the option to submit a Full Technical Report.

Booklists

Please see the Booklist for Part IIA Courses for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

 
Last modified: 12/02/2018 15:02

Engineering Tripos Part IIA, 3F2: Systems & Control, 2023-24

Module Leader

Prof R Sepulchre

Lecturer

Prof G Vinnicombe, Prof R Sephulchre

Lab Leader

Prof G Vinnicombe

Timing and Structure

16 Lectures, Lent Term

Aims

The aims of the course are to:

  • make students familiar with “state-space” methods of modelling and analysing dynamic systems. These methods are extremely important for control engineering, signal processing, and related subjects.

Objectives

As specific objectives, by the end of the course students should be able to:

  • understand what a state-space model is, and how to obtain such a model;
  • relate state-space models to transfer-function models;
  • analyse the behaviour and structure of a state-space model;
  • have some understanding of feedback design using state-space, transfer function and root-locus techniques, and be able to relate them to each other;
  • appreciate the need for and usefulness of state observers, and their role in feedback and other systems.

Content

State-space models (6L)

  • Review of second-year material (linear algebra, transfer functions, poles)
  • Formulation from physical models
  • Linearising nonlinear models
  • Relationship to transfer function matrix (multiple inputs/outputs)
  • Free and forced responses (state-transition matrix convolution, stability)
  • Interconnections of systems

Feedback system design (4L)

  • Review of second-year material (feequency responses, controller structures, objectives of feedback design).
  • The root-locus diagram
  • Routh-Hurwitz criterion (examples of use).

State estimation (3L)

  • Observability.
  • State observer; Oberver design.
  • Connections to Kalman filters, sensor fusion etc.

Control in state-space framework (3L)

  • Controllability.
  • State feedback and pole-placement.
  • Optimal control.
  • State observer combined with state feedback

Examples papers

Paper 1: State-space models - issued in week 3
Paper 2: Root locus - issued in week 5
Paper 3: Observers and state feedback - issued in week 7

Coursework

Inverted pendulum experiment (state feedback). Laboratory report and/or full technical report.

Learning objectives

  • State feedback
  • Pole placement
  • Control design

Practical information:

  • Sessions will take place in EIETL laboratory, on Wednesdays and Fridays of full term
  • Students will find it helpful to read through the lab sheet in advance of carrying out the experiment.).

Full Technical Report:

Students will have the option to submit a Full Technical Report.

Booklists

Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

 
Last modified: 30/05/2023 15:21

Engineering Tripos Part IIA, 3F2: Systems & Control, 2019-20

Module Leader

Dr G Vinnicombe

Lecturer

Dr G Vinnicombe

Lab Leader

Dr G Vinnicombe

Timing and Structure

16 Lectures, Lent Term

Aims

The aims of the course are to:

  • make students familiar with “state-space” methods of modelling and analysing dynamic systems. These methods are extremely important for control engineering, signal processing, and related subjects.

Objectives

As specific objectives, by the end of the course students should be able to:

  • understand what a state-space model is, and how to obtain such a model;
  • relate state-space models to transfer-function models;
  • analyse the behaviour and structure of a state-space model;
  • have some understanding of feedback design using state-space, transfer function and root-locus techniques, and be able to relate them to each other;
  • appreciate the need for and usefulness of state observers, and their role in feedback and other systems.

Content

State-space models (6L)

  • Review of second-year material (linear algebra, transfer functions, poles)
  • Formulation from physical models
  • Linearising nonlinear models
  • Relationship to transfer function matrix (multiple inputs/outputs)
  • Free and forced responses (state-transition matrix convolution, stability)
  • Interconnections of systems

Feedback system design (4L)

  • Review of second-year material (feequency responses, controller structures, objectives of feedback design).
  • The root-locus diagram
  • Routh-Hurwitz criterion (examples of use).

State estimation (3L)

  • Observability.
  • State observer; Oberver design.
  • Connections to Kalman filters, sensor fusion etc.

Control in state-space framework (3L)

  • Controllability.
  • State feedback and pole-placement.
  • Optimal control.
  • State observer combined with state feedback

Examples papers

Paper 1: State-space models - issued in week 3
Paper 2: Root locus - issued in week 5
Paper 3: Observers and state feedback - issued in week 7

Coursework

Inverted pendulum experiment (state feedback). Laboratory report and/or full technical report.

Learning objectives

  • State feedback
  • Pole placement
  • Control design

Practical information:

  • Sessions will take place in EIETL laboratory, on Wednesdays and Fridays of full term
  • Students will find it helpful to read through the lab sheet in advance of carrying out the experiment.).

Full Technical Report:

Students will have the option to submit a Full Technical Report.

Booklists

Please see the Booklist for Part IIA Courses for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

 
Last modified: 05/08/2020 08:31

Engineering Tripos Part IIA, 3F2: Systems & Control, 2025-26

Module Leader

Lecturer

Prof R Sephulchre

Lab Leader

Prof G Vinnicombe

Timing and Structure

16 Lectures, Lent Term

Aims

The aims of the course are to:

  • make students familiar with “state-space” methods of modelling and analysing dynamic systems. These methods are extremely important for control engineering, signal processing, and related subjects.

Objectives

As specific objectives, by the end of the course students should be able to:

  • understand what a state-space model is, and how to obtain such a model;
  • relate state-space models to transfer-function models;
  • analyse the behaviour and structure of a state-space model;
  • have some understanding of feedback design using state-space, transfer function and root-locus techniques, and be able to relate them to each other;
  • appreciate the need for and usefulness of state observers, and their role in feedback and other systems.

Content

State-space models (6L)

  • Review of second-year material (linear algebra, transfer functions, poles)
  • Formulation from physical models
  • Linearising nonlinear models
  • Relationship to transfer function matrix (multiple inputs/outputs)
  • Free and forced responses (state-transition matrix convolution, stability)
  • Interconnections of systems

Feedback system design (4L)

  • Review of second-year material (feequency responses, controller structures, objectives of feedback design).
  • The root-locus diagram
  • Routh-Hurwitz criterion (examples of use).

State estimation (3L)

  • Observability.
  • State observer; Oberver design.
  • Connections to Kalman filters, sensor fusion etc.

Control in state-space framework (3L)

  • Controllability.
  • State feedback and pole-placement.
  • Optimal control.
  • State observer combined with state feedback

Examples papers

Paper 1: State-space models - issued in week 3
Paper 2: Root locus - issued in week 5
Paper 3: Observers and state feedback - issued in week 7

Coursework

Inverted pendulum experiment (state feedback). Laboratory report and/or full technical report.

Learning objectives

  • State feedback
  • Pole placement
  • Control design

Practical information:

  • Sessions will take place in EIETL laboratory, on Wednesdays and Fridays of full term
  • Students will find it helpful to read through the lab sheet in advance of carrying out the experiment.).

Full Technical Report:

Students will have the option to submit a Full Technical Report.

Booklists

Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

 
Last modified: 04/06/2025 13:21

Engineering Tripos Part IIA, 3F2: Systems & Control, 2021-22

Module Leader

Prof G Vinnicombe

Lecturer

Prof G. Vinnicombe

Lecturer

Prof R Sepulchre

Lab Leader

Prof G Vinnicombe

Timing and Structure

16 Lectures, Lent Term

Aims

The aims of the course are to:

  • make students familiar with “state-space” methods of modelling and analysing dynamic systems. These methods are extremely important for control engineering, signal processing, and related subjects.

Objectives

As specific objectives, by the end of the course students should be able to:

  • understand what a state-space model is, and how to obtain such a model;
  • relate state-space models to transfer-function models;
  • analyse the behaviour and structure of a state-space model;
  • have some understanding of feedback design using state-space, transfer function and root-locus techniques, and be able to relate them to each other;
  • appreciate the need for and usefulness of state observers, and their role in feedback and other systems.

Content

State-space models (6L)

  • Review of second-year material (linear algebra, transfer functions, poles)
  • Formulation from physical models
  • Linearising nonlinear models
  • Relationship to transfer function matrix (multiple inputs/outputs)
  • Free and forced responses (state-transition matrix convolution, stability)
  • Interconnections of systems

Feedback system design (4L)

  • Review of second-year material (feequency responses, controller structures, objectives of feedback design).
  • The root-locus diagram
  • Routh-Hurwitz criterion (examples of use).

State estimation (3L)

  • Observability.
  • State observer; Oberver design.
  • Connections to Kalman filters, sensor fusion etc.

Control in state-space framework (3L)

  • Controllability.
  • State feedback and pole-placement.
  • Optimal control.
  • State observer combined with state feedback

Examples papers

Paper 1: State-space models - issued in week 3
Paper 2: Root locus - issued in week 5
Paper 3: Observers and state feedback - issued in week 7

Coursework

Inverted pendulum experiment (state feedback). Laboratory report and/or full technical report.

Learning objectives

  • State feedback
  • Pole placement
  • Control design

Practical information:

  • Sessions will take place in EIETL laboratory, on Wednesdays and Fridays of full term
  • Students will find it helpful to read through the lab sheet in advance of carrying out the experiment.).

Full Technical Report:

Students will have the option to submit a Full Technical Report.

Booklists

Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

 
Last modified: 20/05/2021 07:39

Engineering Tripos Part IIA, 3F2: Systems & Control, 2020-21

Module Leader

Prof G Vinnicombe

Lecturer

Prof G. Vinnicombe

Lecturer

Prof R Sepulchre

Lab Leader

Prof G Vinnicombe

Timing and Structure

16 Lectures, Lent Term

Aims

The aims of the course are to:

  • make students familiar with “state-space” methods of modelling and analysing dynamic systems. These methods are extremely important for control engineering, signal processing, and related subjects.

Objectives

As specific objectives, by the end of the course students should be able to:

  • understand what a state-space model is, and how to obtain such a model;
  • relate state-space models to transfer-function models;
  • analyse the behaviour and structure of a state-space model;
  • have some understanding of feedback design using state-space, transfer function and root-locus techniques, and be able to relate them to each other;
  • appreciate the need for and usefulness of state observers, and their role in feedback and other systems.

Content

State-space models (6L)

  • Review of second-year material (linear algebra, transfer functions, poles)
  • Formulation from physical models
  • Linearising nonlinear models
  • Relationship to transfer function matrix (multiple inputs/outputs)
  • Free and forced responses (state-transition matrix convolution, stability)
  • Interconnections of systems

Feedback system design (4L)

  • Review of second-year material (feequency responses, controller structures, objectives of feedback design).
  • The root-locus diagram
  • Routh-Hurwitz criterion (examples of use).

State estimation (3L)

  • Observability.
  • State observer; Oberver design.
  • Connections to Kalman filters, sensor fusion etc.

Control in state-space framework (3L)

  • Controllability.
  • State feedback and pole-placement.
  • Optimal control.
  • State observer combined with state feedback

Examples papers

Paper 1: State-space models - issued in week 3
Paper 2: Root locus - issued in week 5
Paper 3: Observers and state feedback - issued in week 7

Coursework

Inverted pendulum experiment (state feedback). Laboratory report and/or full technical report.

Learning objectives

  • State feedback
  • Pole placement
  • Control design

Practical information:

  • Sessions will take place in EIETL laboratory, on Wednesdays and Fridays of full term
  • Students will find it helpful to read through the lab sheet in advance of carrying out the experiment.).

Full Technical Report:

Students will have the option to submit a Full Technical Report.

Booklists

Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

 
Last modified: 28/08/2020 11:06

Engineering Tripos Part IIA, 3F2: Systems & Control, 2018-19

Module Leader

Dr G Vinnicombe

Lecturer

Dr G. Vinnicombe

Lab Leader

Dr G Vinnicombe

Timing and Structure

16 Lectures, Lent Term

Aims

The aims of the course are to:

  • make students familiar with “state-space” methods of modelling and analysing dynamic systems. These methods are extremely important for control engineering, signal processing, and related subjects.

Objectives

As specific objectives, by the end of the course students should be able to:

  • understand what a state-space model is, and how to obtain such a model;
  • relate state-space models to transfer-function models;
  • analyse the behaviour and structure of a state-space model;
  • have some understanding of feedback design using state-space, transfer function and root-locus techniques, and be able to relate them to each other;
  • appreciate the need for and usefulness of state observers, and their role in feedback and other systems.

Content

State-space models (6L)

  • Review of second-year material (linear algebra, transfer functions, poles)
  • Formulation from physical models
  • Linearising nonlinear models
  • Relationship to transfer function matrix (multiple inputs/outputs)
  • Free and forced responses (state-transition matrix convolution, stability)
  • Interconnections of systems

Feedback system design (4L)

  • Review of second-year material (feequency responses, controller structures, objectives of feedback design).
  • The root-locus diagram
  • Routh-Hurwitz criterion (examples of use).

State estimation (3L)

  • Observability.
  • State observer; Oberver design.
  • Connections to Kalman filters, sensor fusion etc.

Control in state-space framework (3L)

  • Controllability.
  • State feedback and pole-placement.
  • Optimal control.
  • State observer combined with state feedback

Examples papers

Paper 1: State-space models - issued in week 3
Paper 2: Root locus - issued in week 5
Paper 3: Observers and state feedback - issued in week 7

Coursework

Inverted pendulum experiment (state feedback). Laboratory report and/or full technical report.

Ball and beam experiment (state trajectories, nonlinear control). Laboratory report only.

Learning objectives

  • State feedback
  • Pole placement
  • Control design

Practical information:

  • Sessions will take place in EIETL laboratory, on Wednesdays and Fridays of full term
  • Students will find it helpful to read through the lab sheet in advance of carrying out the experiment.).

Full Technical Report:

Students will have the option to submit a Full Technical Report.

Booklists

Please see the Booklist for Part IIA Courses for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

 
Last modified: 05/08/2020 08:32

Pages

Subscribe to GT1