Engineering Tripos Part IIA, 3B4: Electric Drive Systems, 2023-24
Module Leader
Lecturers
Dr S Goetz, Dr T Flack
Lab Leader
Timing and Structure
Lent term. 16 lectures.
Aims
The aims of the course are to:
- Build on the Electrical Power Course given in Part 1B.
- Recognise that electrical motor drives in applications of all kinds are required to perform at high efficiency, controllability and reliability.
- Study electric drives for: medium power applications; precision applications; high power transport and industrial applications; domestic applications.
- Understand permanent magnet motors and their drive systems with a special focus on all-electric vehicles.
- Examine the magnetic design of permanent magnet motors, focusing on soft magnetic and permanent magnetic materials, saturation and iron losses.
- Study stepper motors which are used in robotics, 2-D and 3-D printers.
- Understand the main design principles of large three-phase induction motors.
- Study electric drive systems based on three-phase induction motors.
- Examine mechanisms for heat production and removal in electrical machines, and be able to carry out thermal analysis for duty-cycling operation.
- Study single-phase induction motor drive systems which are dominant in domestic applications such as white goods.
Objectives
As specific objectives, by the end of the course students should be able to:
- Understand the basic principles of operation.
- Be able to apply simple motor design rules.
- Be able to specify diffferent motors for different applications.
- Understand the design contstriants on multiple motor machines.
- Appreciate magnetic and thermal constraints.
- Be aware of different magnet materials and suitability for motor operation.
Content
The subject of electric drive systems is a vast one, and so the syllabus has been designed to give the student an appreciation of this very important area of engineering by focusing on four areas: electric drives for medium power applications such as electric vehicles (drives based on permanent magnet motors); automation drives with applications such as robotics, 3-D printers (based around stepper motors); large drives for transport/industry (based around the three-phase induction motor); domestic drive systems based around the single-phase induction motor. The course illustrates the idea that the engineering of electric drive systems is multidisciplinary, involving an understanding of mechanics, control systems, power electronics, electromagnetics for machine design, electrical materials and thermal design.
Introduction to Electric Drive Systems (1 lecture)
What is an electric drive system? Range of applications. Components of a drive system. Drive based around brushed DC motor: DC motor principles and operating characteristics; sensors; mechanical load; controller; power electronic converter.
Permanent magnet machines (4 lectures)
Brushed permanent magnet machines and drive systems; principles of operation; analysis; transient behaviour and electrical/electromechanical times constants.
Trapezoidal brushless DC motors: construction, theory and operation as an electric drive system; sensored and sensorless operation.
Sinusoidal brushless DC motors: construction, theory and operation; electric drive system and control; application.
All-electric vehicle: an examination of the specificationof the electric drive system of the NissanLeaf. How the main design choices are made. Consequences for range, top speed, acceleration, efficiency and CO2 emissions.
Magnetic design (1 lecture)
Characteristics of soft and permanent magnetic materials. Analysis using magnetic circuits. Iron loss calculations. Designing with permanent magnet materials.
Stepper motors (2 lectures)
Construction, theory of operation and analysis. Position error. Torque-position characteristic and oscillatory behaviour and its avoidance. Operation at speed and when accelerating. Commissioning. Types of excitation: full-stepping, half-stepping, micro-stepping. Drive circuits.
Basic machine design (2 lectures)
Stator structure including winding and core. Electrical and magnetic loadings. Machine ratings and basic requirement specification. Basic machine design procedure and process.
Induction machine operation (2 lectures)
Operatingcharacteristics of induction machine. Maximum torque and starting torque of induction machines. Speed control methods of induction machine: adjusting stator voltage, adjusting rotor resistance, variable voltage variable frequency (VVVF) method.
Thermal duty cycle of electric machines (2 lectures)
Temperature expression and thermal analysis of electric machines. Basic cooling methods and over temperature protection of electric machine.
Single phase induction machine and universal AC machine (2 lectures)
Theory and equivalent circuit of single phase induction machines. Operating characteristics of single phase induction machines. Equivalent circuit of universal AC machines. Typical applications of universal AC machines.
Examples papers
4 examples papers issued at 2 week intervals to coincide with the lecture material.
Coursework
Electric drive for vehicles
Aim: To understand how an electrical drive system based around a brushless DC motor functions, and to investigate its performance.
Learning objectives:
-
To characterise the components of the drive system through a series of tests.
-
To perform experiments on the drive system under steady-state conditions in order to understand how it works, and to compare experimental results with theory.
-
To investigate the transient behaviour of the drive system during typical drive-cycles.
Practical information:
- Sessions will take place in the EIETL during the Lent term.
- It is best to do the lab after lecture 5 so that all of the background material has been covered.
- Prepare for the lab by reading the lab handout and going over lectures 1 - 5.
Full Technical Report:
Students will have the option to submit a Full Technical Report.
Booklists
Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D4
Ability to generate an innovative design for products, systems, components or processes to fulfil new needs.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 30/05/2023 15:18
Engineering Tripos Part IIA, 3B4: Electric Drive Systems, 2019-20
Module Leader
Lecturers
Dr T Long and Dr M Ainslie
Lab Leader
Dr T Long
Timing and Structure
Lent term. 16 lectures.
Aims
The aims of the course are to:
- Build on the Electrical Power Course given in Part 1B.
- Recognise that electrical motor drives in applications of all kinds are required to perform at high efficiency, controllability and reliability.
- Study electric drives for: medium power applications; precision applications; high power transport and industrial applications; domestic applications.
- Understand permanent magnet motors and their drive systems with a special focus on all-electric vehicles.
- Examine the magnetic design of permanent magnet motors, focusing on soft magnetic and permanent magnetic materials, saturation and iron losses.
- Study stepper motors which are used in robotics, 2-D and 3-D printers.
- Understand the main design principles of large three-phase induction motors.
- Study electric drive systems based on three-phase induction motors.
- Examine mechanisms for heat production and removal in electrical machines, and be able to carry out thermal analysis for duty-cycling operation.
- Study single-phase induction motor drive systems which are dominant in domestic applications such as white goods.
Objectives
As specific objectives, by the end of the course students should be able to:
- Understand the basic principles of operation.
- Be able to apply simple motor design rules.
- Be able to specify diffferent motors for different applications.
- Understand the design contstriants on multiple motor machines.
- Appreciate magnetic and thermal constraints.
- Be aware of different magnet materials and suitability for motor operation.
Content
The subject of electric drive systems is a vast one, and so the syllabus has been designed to give the student an appreciation of this very important area of engineering by focusing on four areas: electric drives for medium power applications such as electric vehicles (drives based on permanent magnet motors); automation drives with applications such as robotics, 3-D printers (based around stepper motors); large drives for transport/industry (based around the three-phase induction motor); domestic drive systems based around the single-phase induction motor. The course illustrates the idea that the engineering of electric drive systems is multidisciplinary, involving an understanding of mechanics, control systems, power electronics, electromagnetics for machine design, electrical materials and thermal design.
Introduction to Electric Drive Systems (1 lecture)
What is an electric drive system? Range of applications. Components of a drive system. Drive based around brushed DC motor: DC motor principles and operating characteristics; sensors; mechanical load; controller; power electronic converter.
Permanent magnet machines (4 lectures)
Brushed permanent magnet machines and drive systems; principles of operation; analysis; transient behaviour and electrical/electromechanical times constants.
Trapezoidal brushless DC motors: construction, theory and operation as an electric drive system; sensored and sensorless operation.
Sinusoidal brushless DC motors: construction, theory and operation; electric drive system and control; application.
All-electric vehicle: an examination of the specificationof the electric drive system of the NissanLeaf. How the main design choices are made. Consequences for range, top speed, acceleration, efficiency and CO2 emissions.
Magnetic design (1 lecture)
Characteristics of soft and permanent magnetic materials. Analysis using magnetic circuits. Iron loss calculations. Designing with permanent magnet materials.
Stepper motors (2 lectures)
Construction, theory of operation and analysis. Position error. Torque-position characteristic and oscillatory behaviour and its avoidance. Operation at speed and when accelerating. Commissioning. Types of excitation: full-stepping, half-stepping, micro-stepping. Drive circuits.
Basic machine design (2 lectures)
Stator structure including winding and core. Electrical and magnetic loadings. Machine ratings and basic requirement specification. Basic machine design procedure and process.
Induction machine operation (2 lectures)
Operatingcharacteristics of induction machine. Maximum torque and starting torque of induction machines. Speed control methods of induction machine: adjusting stator voltage, adjusting rotor resistance, variable voltage variable frequency (VVVF) method.
Thermal duty cycle of electric machines (2 lectures)
Temperature expression and thermal analysis of electric machines. Basic cooling methods and over temperature protection of electric machine.
Single phase induction machine and universal AC machine (2 lectures)
Theory and equivalent circuit of single phase induction machines. Operating characteristics of single phase induction machines. Equivalent circuit of universal AC machines. Typical applications of universal AC machines.
Examples papers
4 examples papers issued at 2 week intervals to coincide with the lecture material.
Coursework
Electric drive for vehicles
Aim: To understand how an electrical drive system based around a brushless DC motor functions, and to investigate its performance.
Learning objectives:
-
To characterise the components of the drive system through a series of tests.
-
To perform experiments on the drive system under steady-state conditions in order to understand how it works, and to compare experimental results with theory.
-
To investigate the transient behaviour of the drive system during typical drive-cycles.
Practical information:
- Sessions will take place in the EIETL during the Lent term.
- It is best to do the lab after lecture 5 so that all of the background material has been covered.
- Prepare for the lab by reading the lab handout and going over lectures 1 - 5.
Full Technical Report:
Students will have the option to submit a Full Technical Report.
Booklists
Please see the Booklist for Part IIA Courses for references for this module.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D4
Ability to generate an innovative design for products, systems, components or processes to fulfil new needs.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 15/05/2019 09:44
Engineering Tripos Part IIA, 3B4: Electric Drive Systems, 2024-25
Module Leader
Lecturers
Prof T Flack, Prof T Coombs
Lab Leader
Timing and Structure
Lent term. 16 lectures.
Aims
The aims of the course are to:
- Build on the Electrical Power Course given in Part 1B.
- Recognise that electrical motor drives in applications of all kinds are required to perform at high efficiency, controllability and reliability.
- Study electric drives for: medium power applications; precision applications; high power transport and industrial applications; domestic applications.
- Understand permanent magnet motors and their drive systems with a special focus on all-electric vehicles.
- Examine the magnetic design of permanent magnet motors, focusing on soft magnetic and permanent magnetic materials, saturation and iron losses.
- Study stepper motors which are used in robotics, 2-D and 3-D printers.
- Understand the main design principles of large three-phase induction motors.
- Study electric drive systems based on three-phase induction motors.
- Examine mechanisms for heat production and removal in electrical machines, and be able to carry out thermal analysis for duty-cycling operation.
- Study single-phase induction motor drive systems which are dominant in domestic applications such as white goods.
Objectives
As specific objectives, by the end of the course students should be able to:
- Understand the basic principles of operation.
- Be able to apply simple motor design rules.
- Be able to specify diffferent motors for different applications.
- Understand the design contstriants on multiple motor machines.
- Appreciate magnetic and thermal constraints.
- Be aware of different magnet materials and suitability for motor operation.
Content
The subject of electric drive systems is a vast one, and so the syllabus has been designed to give the student an appreciation of this very important area of engineering by focusing on four areas: electric drives for medium power applications such as electric vehicles (drives based on permanent magnet motors); automation drives with applications such as robotics, 3-D printers (based around stepper motors); large drives for transport/industry (based around the three-phase induction motor); domestic drive systems based around the single-phase induction motor. The course illustrates the idea that the engineering of electric drive systems is multidisciplinary, involving an understanding of mechanics, control systems, power electronics, electromagnetics for machine design, electrical materials and thermal design.
Introduction to Electric Drive Systems (1 lecture)
What is an electric drive system? Range of applications. Components of a drive system. Drive based around brushed DC motor: DC motor principles and operating characteristics; sensors; mechanical load; controller; power electronic converter.
Permanent magnet machines (4 lectures)
Brushed permanent magnet machines and drive systems; principles of operation; analysis; transient behaviour and electrical/electromechanical times constants.
Trapezoidal brushless DC motors: construction, theory and operation as an electric drive system; sensored and sensorless operation.
Sinusoidal brushless DC motors: construction, theory and operation; electric drive system and control; application.
All-electric vehicle: an examination of the specificationof the electric drive system of the NissanLeaf. How the main design choices are made. Consequences for range, top speed, acceleration, efficiency and CO2 emissions.
Magnetic design (1 lecture)
Characteristics of soft and permanent magnetic materials. Analysis using magnetic circuits. Iron loss calculations. Designing with permanent magnet materials.
Stepper motors (2 lectures)
Construction, theory of operation and analysis. Position error. Torque-position characteristic and oscillatory behaviour and its avoidance. Operation at speed and when accelerating. Commissioning. Types of excitation: full-stepping, half-stepping, micro-stepping. Drive circuits.
Basic machine design (2 lectures)
Stator structure including winding and core. Electrical and magnetic loadings. Machine ratings and basic requirement specification. Basic machine design procedure and process.
Induction machine operation (2 lectures)
Operatingcharacteristics of induction machine. Maximum torque and starting torque of induction machines. Speed control methods of induction machine: adjusting stator voltage, adjusting rotor resistance, variable voltage variable frequency (VVVF) method.
Thermal duty cycle of electric machines (2 lectures)
Temperature expression and thermal analysis of electric machines. Basic cooling methods and over temperature protection of electric machine.
Single phase induction machine and universal AC machine (2 lectures)
Theory and equivalent circuit of single phase induction machines. Operating characteristics of single phase induction machines. Equivalent circuit of universal AC machines. Typical applications of universal AC machines.
Examples papers
4 examples papers issued at 2 week intervals to coincide with the lecture material.
Coursework
Electric drive for vehicles
Aim: To understand how an electrical drive system based around a brushless DC motor functions, and to investigate its performance.
Learning objectives:
-
To characterise the components of the drive system through a series of tests.
-
To perform experiments on the drive system under steady-state conditions in order to understand how it works, and to compare experimental results with theory.
-
To investigate the transient behaviour of the drive system during typical drive-cycles.
Practical information:
- Sessions will take place in the EIETL during the Lent term.
- It is best to do the lab after lecture 5 so that all of the background material has been covered.
- Prepare for the lab by reading the lab handout and going over lectures 1 - 5.
Full Technical Report:
Students will have the option to submit a Full Technical Report.
Booklists
Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D4
Ability to generate an innovative design for products, systems, components or processes to fulfil new needs.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 26/07/2024 14:11
Engineering Tripos Part IIA, 3B4: Electric Drive Systems, 2020-21
Module Leader
Lecturers
Dr T Long and Dr M Ainslie
Lab Leader
Dr T Long
Timing and Structure
Lent term. 16 lectures.
Aims
The aims of the course are to:
- Build on the Electrical Power Course given in Part 1B.
- Recognise that electrical motor drives in applications of all kinds are required to perform at high efficiency, controllability and reliability.
- Study electric drives for: medium power applications; precision applications; high power transport and industrial applications; domestic applications.
- Understand permanent magnet motors and their drive systems with a special focus on all-electric vehicles.
- Examine the magnetic design of permanent magnet motors, focusing on soft magnetic and permanent magnetic materials, saturation and iron losses.
- Study stepper motors which are used in robotics, 2-D and 3-D printers.
- Understand the main design principles of large three-phase induction motors.
- Study electric drive systems based on three-phase induction motors.
- Examine mechanisms for heat production and removal in electrical machines, and be able to carry out thermal analysis for duty-cycling operation.
- Study single-phase induction motor drive systems which are dominant in domestic applications such as white goods.
Objectives
As specific objectives, by the end of the course students should be able to:
- Understand the basic principles of operation.
- Be able to apply simple motor design rules.
- Be able to specify diffferent motors for different applications.
- Understand the design contstriants on multiple motor machines.
- Appreciate magnetic and thermal constraints.
- Be aware of different magnet materials and suitability for motor operation.
Content
The subject of electric drive systems is a vast one, and so the syllabus has been designed to give the student an appreciation of this very important area of engineering by focusing on four areas: electric drives for medium power applications such as electric vehicles (drives based on permanent magnet motors); automation drives with applications such as robotics, 3-D printers (based around stepper motors); large drives for transport/industry (based around the three-phase induction motor); domestic drive systems based around the single-phase induction motor. The course illustrates the idea that the engineering of electric drive systems is multidisciplinary, involving an understanding of mechanics, control systems, power electronics, electromagnetics for machine design, electrical materials and thermal design.
Introduction to Electric Drive Systems (1 lecture)
What is an electric drive system? Range of applications. Components of a drive system. Drive based around brushed DC motor: DC motor principles and operating characteristics; sensors; mechanical load; controller; power electronic converter.
Permanent magnet machines (4 lectures)
Brushed permanent magnet machines and drive systems; principles of operation; analysis; transient behaviour and electrical/electromechanical times constants.
Trapezoidal brushless DC motors: construction, theory and operation as an electric drive system; sensored and sensorless operation.
Sinusoidal brushless DC motors: construction, theory and operation; electric drive system and control; application.
All-electric vehicle: an examination of the specificationof the electric drive system of the NissanLeaf. How the main design choices are made. Consequences for range, top speed, acceleration, efficiency and CO2 emissions.
Magnetic design (1 lecture)
Characteristics of soft and permanent magnetic materials. Analysis using magnetic circuits. Iron loss calculations. Designing with permanent magnet materials.
Stepper motors (2 lectures)
Construction, theory of operation and analysis. Position error. Torque-position characteristic and oscillatory behaviour and its avoidance. Operation at speed and when accelerating. Commissioning. Types of excitation: full-stepping, half-stepping, micro-stepping. Drive circuits.
Basic machine design (2 lectures)
Stator structure including winding and core. Electrical and magnetic loadings. Machine ratings and basic requirement specification. Basic machine design procedure and process.
Induction machine operation (2 lectures)
Operatingcharacteristics of induction machine. Maximum torque and starting torque of induction machines. Speed control methods of induction machine: adjusting stator voltage, adjusting rotor resistance, variable voltage variable frequency (VVVF) method.
Thermal duty cycle of electric machines (2 lectures)
Temperature expression and thermal analysis of electric machines. Basic cooling methods and over temperature protection of electric machine.
Single phase induction machine and universal AC machine (2 lectures)
Theory and equivalent circuit of single phase induction machines. Operating characteristics of single phase induction machines. Equivalent circuit of universal AC machines. Typical applications of universal AC machines.
Examples papers
4 examples papers issued at 2 week intervals to coincide with the lecture material.
Coursework
Electric drive for vehicles
Aim: To understand how an electrical drive system based around a brushless DC motor functions, and to investigate its performance.
Learning objectives:
-
To characterise the components of the drive system through a series of tests.
-
To perform experiments on the drive system under steady-state conditions in order to understand how it works, and to compare experimental results with theory.
-
To investigate the transient behaviour of the drive system during typical drive-cycles.
Practical information:
- Sessions will take place in the EIETL during the Lent term.
- It is best to do the lab after lecture 5 so that all of the background material has been covered.
- Prepare for the lab by reading the lab handout and going over lectures 1 - 5.
Full Technical Report:
Students will have the option to submit a Full Technical Report.
Booklists
Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D4
Ability to generate an innovative design for products, systems, components or processes to fulfil new needs.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 28/08/2020 10:57
Engineering Tripos Part IIA, 3B4: Electric Drive Systems, 2018-19
Module Leader
Lecturers
Dr T Long and Dr T Flack
Lab Leader
Dr T Long
Timing and Structure
Lent term. 16 lectures.
Aims
The aims of the course are to:
- Build on the Electrical Power Course given in Part 1B.
- Recognise that electrical motor drives in applications of all kinds are required to perform at high efficiency, controllability and reliability.
- Study electric drives for: medium power applications; precision applications; high power transport and industrial applications; domestic applications.
- Understand permanent magnet motors and their drive systems with a special focus on all-electric vehicles.
- Examine the magnetic design of permanent magnet motors, focusing on soft magnetic and permanent magnetic materials, saturation and iron losses.
- Study stepper motors which are used in robotics, 2-D and 3-D printers.
- Understand the main design principles of large three-phase induction motors.
- Study electric drive systems based on three-phase induction motors.
- Examine mechanisms for heat production and removal in electrical machines, and be able to carry out thermal analysis for duty-cycling operation.
- Study single-phase induction motor drive systems which are dominant in domestic applications such as white goods.
Objectives
As specific objectives, by the end of the course students should be able to:
- Understand the basic principles of operation.
- Be able to apply simple motor design rules.
- Be able to specify diffferent motors for different applications.
- Understand the design contstriants on multiple motor machines.
- Appreciate magnetic and thermal constraints.
- Be aware of different magnet materials and suitability for motor operation.
Content
The subject of electric drive systems is a vast one, and so the syllabus has been designed to give the student an appreciation of this very important area of engineering by focusing on four areas: electric drives for medium power applications such as electric vehicles (drives based on permanent magnet motors); automation drives with applications such as robotics, 3-D printers (based around stepper motors); large drives for transport/industry (based around the three-phase induction motor); domestic drive systems based around the single-phase induction motor. The course illustrates the idea that the engineering of electric drive systems is multidisciplinary, involving an understanding of mechanics, control systems, power electronics, electromagnetics for machine design, electrical materials and thermal design.
Introduction to Electric Drive Systems (1 lecture)
What is an electric drive system? Range of applications. Components of a drive system. Drive based around brushed DC motor: DC motor principles and operating characteristics; sensors; mechanical load; controller; power electronic converter.
Permanent magnet machines (4 lectures)
Brushed permanent magnet machines and drive systems; principles of operation; analysis; transient behaviour and electrical/electromechanical times constants.
Trapezoidal brushless DC motors: construction, theory and operation as an electric drive system; sensored and sensorless operation.
Sinusoidal brushless DC motors: construction, theory and operation; electric drive system and control; application.
All-electric vehicle: an examination of the specificationof the electric drive system of the NissanLeaf. How the main design choices are made. Consequences for range, top speed, acceleration, efficiency and CO2 emissions.
Magnetic design (1 lecture)
Characteristics of soft and permanent magnetic materials. Analysis using magnetic circuits. Iron loss calculations. Designing with permanent magnet materials.
Stepper motors (2 lectures)
Construction, theory of operation and analysis. Position error. Torque-position characteristic and oscillatory behaviour and its avoidance. Operation at speed and when accelerating. Commissioning. Types of excitation: full-stepping, half-stepping, micro-stepping. Drive circuits.
Basic machine design (2 lectures)
Stator structure including winding and core. Electrical and magnetic loadings. Machine ratings and basic requirement specification. Basic machine design procedure and process.
Induction machine operation (2 lectures)
Operatingcharacteristics of induction machine. Maximum torque and starting torque of induction machines. Speed control methods of induction machine: adjusting stator voltage, adjusting rotor resistance, variable voltage variable frequency (VVVF) method.
Thermal duty cycle of electric machines (2 lectures)
Temperature expression and thermal analysis of electric machines. Basic cooling methods and over temperature protection of electric machine.
Single phase induction machine and universal AC machine (2 lectures)
Theory and equivalent circuit of single phase induction machines. Operating characteristics of single phase induction machines. Equivalent circuit of universal AC machines. Typical applications of universal AC machines.
Examples papers
4 examples papers issued at 2 week intervals to coincide with the lecture material.
Coursework
Electric drive for vehicles
Aim: To understand how an electrical drive system based around a brushless DC motor functions, and to investigate its performance.
Learning objectives:
-
To characterise the components of the drive system through a series of tests.
-
To perform experiments on the drive system under steady-state conditions in order to understand how it works, and to compare experimental results with theory.
-
To investigate the transient behaviour of the drive system during typical drive-cycles.
Practical information:
- Sessions will take place in the EIETL during the Lent term.
- It is best to do the lab after lecture 5 so that all of the background material has been covered.
- Prepare for the lab by reading the lab handout and going over lectures 1 - 5.
Full Technical Report:
Students will have the option to submit a Full Technical Report.
Booklists
Please see the Booklist for Part IIA Courses for references for this module.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D4
Ability to generate an innovative design for products, systems, components or processes to fulfil new needs.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 05/06/2018 14:06
Engineering Tripos Part IIA, 3B4: Electric Drive Systems, 2025-26
Module Leader
Lecturers
Prof T Long, Prof T Coombs
Lab Leader
Timing and Structure
Lent term. 16 lectures.
Aims
The aims of the course are to:
- Build on the Electrical Power Course given in Part 1B.
- Recognise that electrical motor drives in applications of all kinds are required to perform at high efficiency, controllability and reliability.
- Study electric drives for: medium power applications; precision applications; high power transport and industrial applications; domestic applications.
- Understand permanent magnet motors and their drive systems with a special focus on all-electric vehicles.
- Examine the magnetic design of permanent magnet motors, focusing on soft magnetic and permanent magnetic materials, saturation and iron losses.
- Study stepper motors which are used in robotics, 2-D and 3-D printers.
- Understand the main design principles of large three-phase induction motors.
- Study electric drive systems based on three-phase induction motors.
- Examine mechanisms for heat production and removal in electrical machines, and be able to carry out thermal analysis for duty-cycling operation.
- Study single-phase induction motor drive systems which are dominant in domestic applications such as white goods.
Objectives
As specific objectives, by the end of the course students should be able to:
- Understand the basic principles of operation.
- Be able to apply simple motor design rules.
- Be able to specify diffferent motors for different applications.
- Understand the design contstriants on multiple motor machines.
- Appreciate magnetic and thermal constraints.
- Be aware of different magnet materials and suitability for motor operation.
Content
The subject of electric drive systems is a vast one, and so the syllabus has been designed to give the student an appreciation of this very important area of engineering by focusing on four areas: electric drives for medium power applications such as electric vehicles (drives based on permanent magnet motors); automation drives with applications such as robotics, 3-D printers (based around stepper motors); large drives for transport/industry (based around the three-phase induction motor); domestic drive systems based around the single-phase induction motor. The course illustrates the idea that the engineering of electric drive systems is multidisciplinary, involving an understanding of mechanics, control systems, power electronics, electromagnetics for machine design, electrical materials and thermal design.
Introduction to Electric Drive Systems (1 lecture)
What is an electric drive system? Range of applications. Components of a drive system. Drive based around brushed DC motor: DC motor principles and operating characteristics; sensors; mechanical load; controller; power electronic converter.
Permanent magnet machines (4 lectures)
Brushed permanent magnet machines and drive systems; principles of operation; analysis; transient behaviour and electrical/electromechanical times constants.
Trapezoidal brushless DC motors: construction, theory and operation as an electric drive system; sensored and sensorless operation.
Sinusoidal brushless DC motors: construction, theory and operation; electric drive system and control; application.
All-electric vehicle: an examination of the specificationof the electric drive system of the NissanLeaf. How the main design choices are made. Consequences for range, top speed, acceleration, efficiency and CO2 emissions.
Magnetic design (1 lecture)
Characteristics of soft and permanent magnetic materials. Analysis using magnetic circuits. Iron loss calculations. Designing with permanent magnet materials.
Stepper motors (2 lectures)
Construction, theory of operation and analysis. Position error. Torque-position characteristic and oscillatory behaviour and its avoidance. Operation at speed and when accelerating. Commissioning. Types of excitation: full-stepping, half-stepping, micro-stepping. Drive circuits.
Basic machine design (2 lectures)
Stator structure including winding and core. Electrical and magnetic loadings. Machine ratings and basic requirement specification. Basic machine design procedure and process.
Induction machine operation (2 lectures)
Operatingcharacteristics of induction machine. Maximum torque and starting torque of induction machines. Speed control methods of induction machine: adjusting stator voltage, adjusting rotor resistance, variable voltage variable frequency (VVVF) method.
Thermal duty cycle of electric machines (2 lectures)
Temperature expression and thermal analysis of electric machines. Basic cooling methods and over temperature protection of electric machine.
Single phase induction machine and universal AC machine (2 lectures)
Theory and equivalent circuit of single phase induction machines. Operating characteristics of single phase induction machines. Equivalent circuit of universal AC machines. Typical applications of universal AC machines.
Examples papers
4 examples papers issued at 2 week intervals to coincide with the lecture material.
Coursework
Electric drive for vehicles
Aim: To understand how an electrical drive system based around a brushless DC motor functions, and to investigate its performance.
Learning objectives:
-
To characterise the components of the drive system through a series of tests.
-
To perform experiments on the drive system under steady-state conditions in order to understand how it works, and to compare experimental results with theory.
-
To investigate the transient behaviour of the drive system during typical drive-cycles.
Practical information:
- Sessions will take place in the EIETL during the Lent term.
- It is best to do the lab after lecture 5 so that all of the background material has been covered.
- Prepare for the lab by reading the lab handout and going over lectures 1 - 5.
Full Technical Report:
Students will have the option to submit a Full Technical Report.
Booklists
Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D4
Ability to generate an innovative design for products, systems, components or processes to fulfil new needs.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 05/06/2025 13:45
Engineering Tripos Part IIA, 3B4: Electric Drive Systems, 2022-23
Module Leader
Lecturers
Dr S Goetz, Prof T Long
Lab Leader
Timing and Structure
Lent term. 16 lectures.
Aims
The aims of the course are to:
- Build on the Electrical Power Course given in Part 1B.
- Recognise that electrical motor drives in applications of all kinds are required to perform at high efficiency, controllability and reliability.
- Study electric drives for: medium power applications; precision applications; high power transport and industrial applications; domestic applications.
- Understand permanent magnet motors and their drive systems with a special focus on all-electric vehicles.
- Examine the magnetic design of permanent magnet motors, focusing on soft magnetic and permanent magnetic materials, saturation and iron losses.
- Study stepper motors which are used in robotics, 2-D and 3-D printers.
- Understand the main design principles of large three-phase induction motors.
- Study electric drive systems based on three-phase induction motors.
- Examine mechanisms for heat production and removal in electrical machines, and be able to carry out thermal analysis for duty-cycling operation.
- Study single-phase induction motor drive systems which are dominant in domestic applications such as white goods.
Objectives
As specific objectives, by the end of the course students should be able to:
- Understand the basic principles of operation.
- Be able to apply simple motor design rules.
- Be able to specify diffferent motors for different applications.
- Understand the design contstriants on multiple motor machines.
- Appreciate magnetic and thermal constraints.
- Be aware of different magnet materials and suitability for motor operation.
Content
The subject of electric drive systems is a vast one, and so the syllabus has been designed to give the student an appreciation of this very important area of engineering by focusing on four areas: electric drives for medium power applications such as electric vehicles (drives based on permanent magnet motors); automation drives with applications such as robotics, 3-D printers (based around stepper motors); large drives for transport/industry (based around the three-phase induction motor); domestic drive systems based around the single-phase induction motor. The course illustrates the idea that the engineering of electric drive systems is multidisciplinary, involving an understanding of mechanics, control systems, power electronics, electromagnetics for machine design, electrical materials and thermal design.
Introduction to Electric Drive Systems (1 lecture)
What is an electric drive system? Range of applications. Components of a drive system. Drive based around brushed DC motor: DC motor principles and operating characteristics; sensors; mechanical load; controller; power electronic converter.
Permanent magnet machines (4 lectures)
Brushed permanent magnet machines and drive systems; principles of operation; analysis; transient behaviour and electrical/electromechanical times constants.
Trapezoidal brushless DC motors: construction, theory and operation as an electric drive system; sensored and sensorless operation.
Sinusoidal brushless DC motors: construction, theory and operation; electric drive system and control; application.
All-electric vehicle: an examination of the specificationof the electric drive system of the NissanLeaf. How the main design choices are made. Consequences for range, top speed, acceleration, efficiency and CO2 emissions.
Magnetic design (1 lecture)
Characteristics of soft and permanent magnetic materials. Analysis using magnetic circuits. Iron loss calculations. Designing with permanent magnet materials.
Stepper motors (2 lectures)
Construction, theory of operation and analysis. Position error. Torque-position characteristic and oscillatory behaviour and its avoidance. Operation at speed and when accelerating. Commissioning. Types of excitation: full-stepping, half-stepping, micro-stepping. Drive circuits.
Basic machine design (2 lectures)
Stator structure including winding and core. Electrical and magnetic loadings. Machine ratings and basic requirement specification. Basic machine design procedure and process.
Induction machine operation (2 lectures)
Operatingcharacteristics of induction machine. Maximum torque and starting torque of induction machines. Speed control methods of induction machine: adjusting stator voltage, adjusting rotor resistance, variable voltage variable frequency (VVVF) method.
Thermal duty cycle of electric machines (2 lectures)
Temperature expression and thermal analysis of electric machines. Basic cooling methods and over temperature protection of electric machine.
Single phase induction machine and universal AC machine (2 lectures)
Theory and equivalent circuit of single phase induction machines. Operating characteristics of single phase induction machines. Equivalent circuit of universal AC machines. Typical applications of universal AC machines.
Examples papers
4 examples papers issued at 2 week intervals to coincide with the lecture material.
Coursework
Electric drive for vehicles
Aim: To understand how an electrical drive system based around a brushless DC motor functions, and to investigate its performance.
Learning objectives:
-
To characterise the components of the drive system through a series of tests.
-
To perform experiments on the drive system under steady-state conditions in order to understand how it works, and to compare experimental results with theory.
-
To investigate the transient behaviour of the drive system during typical drive-cycles.
Practical information:
- Sessions will take place in the EIETL during the Lent term.
- It is best to do the lab after lecture 5 so that all of the background material has been covered.
- Prepare for the lab by reading the lab handout and going over lectures 1 - 5.
Full Technical Report:
Students will have the option to submit a Full Technical Report.
Booklists
Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D4
Ability to generate an innovative design for products, systems, components or processes to fulfil new needs.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 23/11/2022 08:36
Engineering Tripos Part IIA, 3B4: Electric Drive Systems, 2017-18
Module Leader
Lecturers
Dr P Long and Dr T Flack
Lab Leader
Dr P Long
Timing and Structure
Lent term. 16 lectures.
Aims
The aims of the course are to:
- Build on the Electrical Power Course given in Part 1B.
- Recognise that electrical motor drives in applications of all kinds are required to perform at high efficiency, controllability and reliability.
- Give an emphasis to design and applications of electical motor drives in housefold use, industry, and high performance machines.
- Look at general household use, typified by single phase motors.
- Examine three phase motors which are heavily utilised in industry for applications such as trains, pumps and conveyor belts.
- Look at high precision machines such as salient pole motors which are used at the small end of mechatronics and pernament magnet motors which are high performance machines also of use in mechatronics.
- Explore the overall design of mechatronic devices such as robots.
Objectives
As specific objectives, by the end of the course students should be able to:
- Understand the basic principles of operation.
- Be able to apply simple motor design rules.
- Be able to specify diffferent motors for different applications.
- Understand the design contstriants on multiple motor machines.
- Appreciate magnetic and thermal constraints.
- Be aware of different magnet materials and suitability for motor operation.
Content
Motor Design (4 lectures)
Basic ac winding design, specific magnetic and electric loadings, air gap volume, magnetic circuit design, saturation effects. Thermal considerations.
All-Electric vehicles (1.5 lectures)
There are two main areas where the all-electric vehicle is being considered. The first is in aircraft where considerable advantage can be gained from the removal of mechanical systems which require bulky and expensive cooling systems and the replacement of these by electric motors and generators. The second is the electric car, where the goal is to remove pollution from the streets of busy towns. These lectures will explore the problems and the practicalities of these systems.
Single-phase motors (1.5 lectures)
Single-phase induction motors - split-phase, capacitor-start, permanent split capacitor, shaded-pole variants, ac commutator motors.
Three-phase motors (2 lectures)
Voltage source and current source, variable frequency three-phase induction motor drives. Open and closed-loop control schemes for induction motor drives. Analysis of the drive in the steady state.
Reluctance machines (2 lectures)
Salient-pole synchronous machines, stepper motor single-step and multi-step operation, switched-reluctance motors - principles of operation, behaviour, applications. Variable frequency operation and principal control strategies.
Permanent magnet machines (2 lectures)
Brushed and brushless motors, magnet materials (power/weight, cost, type), general principles of operation.
Mechatronics design (3 lectures)
Multiplexing of mutiple drive machines. Such as in robotics or rolling mills
Coursework
Robotic Steering
Learning objectives:
Practical information:
- Sessions will take place in [Location], during week(s) [xxx].
- This activity [involves/doesn't involve] preliminary work ([estimated duration]).
Full Technical Report:
Students [will/won't] have the option to submit a Full Technical Report.
Booklists
Please see the Booklist for Part IIA Courses for references for this module.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D4
Ability to generate an innovative design for products, systems, components or processes to fulfil new needs.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 03/08/2017 15:17
Engineering Tripos Part IIA, 3B3: Switch-mode Electronics, 2020-21
Module Leader
Lecturer
Dr T Long
Lecturer
Prof Florin Udrea
Lab Leader
Dr T Long
Timing and Structure
Michaelmas term. 2 lectures/week.
Prerequisites
2P5
Aims
The aims of the course are to:
- Introduce power electronics and some of its main applications (power conversion in renewable energy, electric vehicles, smart grids)
- Introduce typical topologies for AC-DC, DC-DC and DC-AC power conversion
- Give basic and useful skills in analysing and designing power electronics based power converters (PLECS modelling)
Objectives
As specific objectives, by the end of the course students should be able to:
- Know the characteristics of the diode and how to use diodes in rectifier circuits to obtain d.c. from single and three-phase a.c.
- Know how to reduce ripple using smoothing circuits.
- Know the characteristics of the thyristor and how to use the thyristor in controlled rectifiers operating from single or three-phase supplies.
- Be aware of the principal types of converter circuit and their characteristics.
- Understand the principle of pulse-width modulation and simple ways of generating pulse-width modulated waveforms.
- Understand working principle of three-phase inverter circuits using pulse-width modulation.
- Be familiar with the
- Be familiar with the passive components (inductor and capacitor) used in power electronic systems
- Appreciate the relative merits of MOSFETs, IGBTs and bipolar transistors as switches.
- Describe the various losses and estimate the efficiency of a Power Electronic System.
- Gain skills of power electronic system modelling (PLECS)
- Conduct basic tests of power electronic systems and use digital oscilloscope, pulse generator, probes and be familiar with typical power electronic and passive component devices and packages in real systems(Lab)
Content
This module will also introduce PLECS modelling, all module students are offered free license (full function) of PLECS for 12 months.
Lecture 1: Introduction of power electronic systems and their applications, common math and physics used in analysing power electronic systems
- Non-isolated DC-DC converter
Lecture 2: Non-isolated DC-DC converters (BUCK, BOOST and BUCK-BOOST) in Continuous Current Mode (CCM) their operating principles
Lecture 3: Non-isolated DC-DC converters in Discontinuous Current Mode (DCM) their operating principles
- Bridge based DC-AC inverter/rectifier
Lecture 4: Bridge converter, the circuit, working principle and applications
Lecture 5: Single phase DC-AC inverter and Sinusoidal Pulse Width Modulation (SPWM)
Lecture 6: Three phase DC-AC inverter/rectifier and AC line filter design
Lecture 7: Tutorial 1: DC-DC and DC-AC converters (two Tripo level questions)
- Diode based AC-DC rectifier
Lecture 8: Uncontrolled single AC-DC rectifier with ideal AC source, diode bridge circuit and principles, capacitor filtering techniques
Lecture 9: Uncontrolled three AC-DC rectifier with ideal AC source, diode bridge circuit and principles, capacitor filtering techniques
- Isolated DC-DC converter
Lecture 10: Isolated DC-DC converter: high frequency transformers, push-pull converter
Lecture 11: Flyback DC-DC converter: working principles and design requirements
Lecture 12: LLC Resonant converter: working principles and design requirements
Lecture 13: Tutorial 2: AC-DC diode based rectifier and isolated DC-DC converters (Flyback and LLC Resonant)
- Power electronic devices
Lecture 14: Power diodes and bipolar junction transistor
Lecture 15: The Insulted Gate Bipolar Transistor (IGBT): modes of operation. trade-offs.
Lecture 16: The power MOSFET: Concept, modes of operation. trade-offs.
Examples papers
4 examples papers issued at 2 week intervals to coincide with the lecture material.
Coursework
DC-DC converter (upgraded new lab kit and facility from 2020)
Objectives:
- Be familiar with real power electronic and passive devices and their packages
- Use digital oscilloscope for power electronic system testing and data acquisition
- Use voltage and current probe of measuring switching voltage and current
- Observe and operate Pulse Width Modulation (by pulse generator) of controlling power electronic system
- Observe and operate passive components in power electronic systems and understand their functions
Pre-requisite
- Watch introductory video prior lab
- Read lab sheet prior lab
Full Technical Report:
- Optional tasks and questions are given for FTR
Booklists
Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
Last modified: 25/09/2020 17:01
Engineering Tripos Part IIA, 3B3: Switch-mode Electronics, 2022-23
Module Leader
Lecturer
Prof T Long, Prof F Udrea
Lab Leader
Timing and Structure
Michaelmas term. 2 lectures/week.
Prerequisites
2P5
Aims
The aims of the course are to:
- Introduce power electronics and some of its main applications (power conversion in renewable energy, electric vehicles, power supply unit (PSU))
- Introduce typical topologies for AC-DC, DC-DC and DC-AC power conversion
- Give basic and useful skills in analysing and designing power electronics based power converters (PLECS modelling)
Objectives
As specific objectives, by the end of the course students should be able to:
- Know typical applications and requirements of power electronic based power converters (switch-mode power conversion)
- Know the characteristics of the diodes and power transistors and their functions in switch-mode power electronic circuits
- Know the functions of inductors and capacitors in switch-mode power conversion
- Know typical switch-mode power conversion circuit topologies: DC-DC, DC-AC, AC-DC
- Know how to reduce voltage and current ripple using smoothing circuits.
- Know high frequency transformers and their functions in power converters
- Understand the principle of pulse-width modulation and simple ways of generating pulse-width modulated waveforms.
- Know the structure and working principle of MOSFET, BJT, and IGBT as power transistors
- Describe various losses and estimate the efficiency of a power electronic system.
- Gain skills of power electronic system modelling (PLECS)
- Conduct basic tests of power electronic systems and use digital oscilloscope, pulse generator, probes and be familiar with typical power electronic and passive component devices and packages in real systems (via Lab)
Content
This module will also introduce PLECS modelling, all module students are offered free license (full function) of PLECS for 12 months.
Lecture 1: Introduction of power electronic systems and their applications, common math and physics used in analysing power electronic systems
- Non-isolated DC-DC converter
Lecture 2: Non-isolated DC-DC converters (BUCK, BOOST and BUCK-BOOST) in Continuous Current Mode (CCM) their operating principles
Lecture 3: Non-isolated DC-DC converters in Discontinuous Current Mode (DCM) their operating principles
- Bridge based DC-AC inverter/rectifier
Lecture 4: Bridge converter, the circuit, working principle and applications
Lecture 5: Single phase DC-AC inverter and Sinusoidal Pulse Width Modulation (SPWM)
Lecture 6: Three phase DC-AC inverter/rectifier and AC line filter design
Lecture 7: Tutorial 1: DC-DC and DC-AC converters (two Tripo level questions)
- Diode based AC-DC rectifier
Lecture 8: Uncontrolled single AC-DC rectifier with ideal AC source, diode bridge circuit and principles, capacitor filtering techniques
Lecture 9: Uncontrolled three AC-DC rectifier with ideal AC source, diode bridge circuit and principles, capacitor filtering techniques
- Isolated DC-DC converter
Lecture 10: Isolated DC-DC converter: high frequency transformers, push-pull converter
Lecture 11: Flyback DC-DC converter: working principles and design requirements
Lecture 12: LLC Resonant converter: working principles and design requirements
Lecture 13: Tutorial 2: AC-DC diode based rectifier and isolated DC-DC converters (Flyback and LLC Resonant)
- Power electronic devices
Lecture 14: Power diodes and bipolar junction transistor
Lecture 15: The Insulted Gate Bipolar Transistor (IGBT): modes of operation. trade-offs.
Lecture 16: The power MOSFET: Concept, modes of operation. trade-offs.
Examples papers
4 examples papers issued at 2 week intervals to coincide with the lecture material.
Coursework
DC-DC converter (upgraded new lab kit and facility from 2020)
Objectives:
- Be familiar with real power electronic and passive devices and their packages
- Use digital oscilloscope for power electronic system testing and data acquisition
- Use voltage and current probe of measuring switching voltage and current
- Observe and operate Pulse Width Modulation (by pulse generator) of controlling power electronic system
- Observe and operate passive components in power electronic systems and understand their functions
Pre-requisite
- Watch introductory video prior lab
- Read lab sheet prior lab
Full Technical Report:
- Optional tasks and questions are given for FTR
Booklists
Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
Last modified: 23/11/2022 08:35

