Undergraduate Teaching 2025-26

E3

E3

Not logged in. More information may be available... Login via Raven / direct.

Engineering Tripos Part IIA, 3C9: Fracture Mechanics of Materials & Structures, 2021-22

Module Leader

Prof N.A. Fleck

Lecturers

Prof N.A. Fleck, Prof V.S. Deshpande

Lab Leader

Dr B. Liu

Timing and Structure

Lent term. 16 lectures + coursework

Prerequisites

3C7 assumed

Aims

The aims of the course are to:

  • Explain the physical processes underlying fracture from a single dominant crack and from a distribution of cracks.
  • Describe the main concepts of fracture mechanics in terms of stress analysis, failure mechanisms and design methods.
  • Discuss both linear elastic fracture mechanics (LEFM) and ductile fracture.
  • Apply the methods to a wide range of engineering applications from thin film design in electronics to fatigue life assessment of nuclear pressure vessels and damage mechanics of concrete.

Objectives

As specific objectives, by the end of the course students should be able to:

  • To explain the physical processes underlying fracture from a single dominant crack and from a distribution of cracks.
  • Quantitative design methods are physically based and used to predict fatigue life and residual strength of damaged structures

Content

Elastic stress analysis (4L) Prof. Deshpande

  • Williams solution using the Airy stress function
  • LEFM and interfacial fracture
  • Energy appraoch to fracture
  • Practical K-calibrations and use of superposition
  • Fracture of thin films and of weldments
  • Prediction of fracture toughness

Small Scale Yielding (2L) Prof Deshpande

  • plastic zone size and crack tip opening displacement
  • R-curves: the tear resistance of metals, composites and biological tissues

Large Scale Yielding (4L) Prof Fleck

  • Dugdale model for a large plastic zone from a crack tip, and transition to bulk plasticity
  • Application to adhesive joints and crazing of polymers, and to pressure vessels
  • Void nucleation and growth in a plastic field

Fatigue crack growth (5L) Prof Fleck

  • Threshold, Paris law, variable amplitude loading for aircraft
  • S-N curves for fatigue crack initiation and growth

Case study on fatigue of railway lines (1L) Prof Smith (Guest lecture)

Case studies on fatigue failure in transport applications given by the former Chief Scientific Advisor to the Ministry of Transport

REFERENCES

Fracture Mechanics: fundamentals and applications, T.L.Anderson,Taylor Francis,2005.

Coursework

Learning objectives:

(i) To develop an understanding of failure process under monotonic loading at ambient temperatures

(ii) To examine the use of stress intensity factor and strain energy release rate to describe the failure of cracked bodies.  

(iii) To evaluate the use of linear elastic fracture (LEFM) and the concept of limit load in the assessment of cracked components.

Practical information:

The course work involves:

  • Lab Session 1 - Tensile testing (2 hrs), location: Fatigue Laboratory, ground floor, Baker Building
  • Lab Session 2 - Pipe bursting (30 mins), location: Materials Teaching Laboratory, ground floor, Inglis Building
  • Feedback session (30 mins), location: Oatley 1 Meeting room, second floor, Baker Building

           Please book your sessions using the following link:

http://www.eng.cam.ac.uk/teaching/apps/cuedle/index.php?context=3C9(2021)

Full Technical Report:

Students have the option to submit a Full Technical Report.

Booklists

Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

 
Last modified: 17/01/2022 11:54

Engineering Tripos Part IIA, 3C8: Machine Design, 2025-26

Module Leader

Prof MPF Sutcliffe

Lecturers

Prof M Sutcliffe, Dr R Roebuck, Dr X Na

Lab Leader

Dr X Na

Timing and Structure

Michaelmas term.16 lectures.

Aims

The aims of the course are to:

  • Analyse the contact stresses and kinematical behaviour of solid contacts and to understand the design of rolling element bearings and other machine elements.
  • Understand the design of involute gears and appreciate the stress limits and practical problems of gears.
  • To analyse the behaviour of multiple gear drives and planetary gears.
  • Understand how components are combined to make up a mechanical power transmission system, including power matching to achieve a desired operating point.
  • Apply the principles of power matching to hybrid drives.
  • Introduce methods for specifying the type and arrangement of rolling element bearings to meet a specified duty.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Calculate the strength limitations of solid contacts.
  • Analyse the kinematical behaviour of contacts, especially in rotating machinery.
  • Understand and analyse the performance of friction drives.
  • Be familiar with the geometry and kinematics of involute gear wheels and racks.
  • Understand the criterion for tooth bending failure and be able to derive the Hertz pressure at tooth contacts.
  • Use power and torque calculations to analyse epicyclic gears and multiple gear drives.
  • Understand how power transmission components are used as part of a system, including hybrid drives.
  • Determine the operating point and calculate the optimum speed ratio for specified conditions.
  • Select a rolling element bearing for a specific duty.

Content

Mechanics of contacts (5L) Dr Richard Roebuck

  • Hertzian point contacts
  • Stresses and stiffness
  • Hertzian line contacts
  • Applications in bearings and CVTs
  • Traction drives and CVTs 

 

Gears (6L) Prof. Michael Sutcliffe

  • Geometry and kinematics
  • Failure, root bending and contact fatigue
  • Design and applications
  • Multiple drives and planetary gears
  • Design calculations for planetary gears 

 

Power matching (3L) Dr Xiaoxiang Na

  • Introduction and applications: automotive transmission, bicycle transmission
  • Sources and loads; devices and their characteristics
  • Power matching using a simple gear ratio
  • Hybrid drives 

 

Rolling element bearings (2L) Dr Xiaoxiang Na

  • Bearing types; life equation
  • Shaft and bearing arrangements 

Examples papers

Examples Paper 1 - Mechanics of contacts (issued at lecture 1)

Examples Paper 2 - Gears (issued at lecture 6)

Examples Paper 3 - Power matching, rolling element bearings (issued at lecture 12)

 

 

 

Coursework

Power output characteristic of a cyclist

In this experiment the power output charateristic of a cyclist will be determined by holding the heart rate (a proxy for power input) constant and determining the dependence of crank torque and crank power on crank speed. 

Learning objectives

  • to calibrate and operate instrumentation to measure human power output
  • to propose and test an hypothesis using measured data with large inherent uncertainty
  • to understand the power output characteristic of a cyclist

Practical information:

  • Sessions will take place in the Baker Building, South Wing Mechanics Laboratory, during weeks 2 to 8 (Fridays and Wednesdays, 11am-1pm)
  • This activity does involve preliminary work, approximately 40 minutes: read the lab sheet carefully and watch the demonstration video before the session.
  • Book a timeslot online via the moodle site.
  • The practical needs to be done in pairs, with at least one member of the pair being comfortable riding the stationary bicycle. It is not possible to perform the experiment individually.
  • The lab report must be written individually. All data processing, analysis and interpretation performed after the lab session must be done independently and not in collaboration with each other or anyone else.

Full Technical Report:

Students will have the option to submit a Full Technical Report. The FTR should be a complete, detailed, formal report of the experiment, suitable for publication in an engineering journal. It should include all of the information necessary for the reader to understand the aim, objectives, apparatus, method, results, analysis, discussion and conclusions. In addition the FTR should describe in precise engineering terms the operating principles of three different commercially-available devices for measuring cyclist power output, and comment upon likely sources and magnitudes of error. 

Booklists

Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

 
Last modified: 04/06/2025 13:18

Engineering Tripos Part IIA, 3C8: Machine Design, 2017-18

Module Leader

Dr D Cole

Lecturers

Dr D Cole and Dr R Roebuck

Lab Leader

Dr D Cole

Timing and Structure

Michaelmas term. 16 lectures.

Aims

The aims of the course are to:

  • Analyse the contact stresses and kinematical behaviour of solid contacts and to understand the design of rolling element bearings and other machine elements.
  • Understand the design of involute gears and appreciate the stress limits and practical problems of gears.
  • To analyse the behaviour of multiple gear drives and planetary gears.
  • Understand how components are combined to make up a mechanical power transmission system, including power matching to achieve a desired operating point.
  • Apply the principles of power matching to hybrid drives.
  • Introduce methods for specifying the type and arrangement of rolling element bearings to meet a specified duty.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Calculate the strength limitations of solid contacts.
  • Analyse the kinematical behaviour of contacts, especially in rotating machinery.
  • Understand and analyse the performance of friction drives.
  • Be familiar with the geometry and kinematics of involute gear wheels and racks.
  • Understand the criterion for tooth bending failure and be able to derive the Hertz pressure at tooth contacts.
  • Use power and torque calculations to analyse epicyclic gears and multiple gear drives.
  • Understand how power transmission components are used as part of a system, including hybrid drives.
  • Determine the operating point and calculate the optimum speed ratio for specified conditions.
  • Select a rolling element bearing for a specific duty.

Content

Mechanics of contacts (5L) Dr Richard Roebuck

  • Hertzian point contacts

  • Stresses and stiffness

  • Hertzian line contacts

  • Applications in bearings and CVTs

  • Traction drives and CVTs 

 

Gears (6L) Dr David Cole

  • Geometry and kinematics

  • Failure, root bending and contact fatigue

  • Design and applications

  • Multiple drives and planetary gears

  • Design calculations for planetary gears 

 

Power matching (3L) Dr David Cole

  • Introduction and applications: automotive transmission, bicycle transmission

  • Sources and loads; devices and their characteristics

  • Power matching using a simple gear ratio

  • Hybrid drives 

 

Rolling element bearings (2L) Dr David Cole

  • Bearing types; life equation

  • Shaft and bearing arrangements 

Examples papers

Examples paper 1 - Mechanics of contacts (issued at lecture 1)

Examples paper 2 - Gears (issued at lecture 6)

Examples paper 3 - Power matching, rolling element bearings (issued at lecture 12) 

 

Coursework

Power output characteristic of a cyclist

In this experiment the power output charateristic of a cyclist will be determined by holding the heart rate (that is, power input) constant and determining the dependence of crank torque and crank power on crank speed. 

Learning objectives

  • to calibrate and operate instrumentation to measure human power output
  • to propose and test an hypothesis using measured data with large inherent uncertainty
  • to understand the power output characteristic of a cyclist

Practical information:

  • Sessions will take place in the Baker Building, South Wing Mechanics Laboratory, during weeks 2 to 8.
  • This activity does involve preliminary work, approximately 30 minutes: read the lab sheet carefully before the session.
  • Book a timeslot online.

Full Technical Report:

Students will have the option to submit a Full Technical Report. The FTR should be a complete, detailed, formal report of the experiment, suitable for publication in an engineering journal. It should include all of the information necessary for the reader to understand the aim, objectives, apparatus, method, results, analysis, discussion and conclusions. In addition the FTR should describe in precise engineering terms the operating principles of three different commercially-available devices for measuring cyclist power output, and comment upon likely sources and magnitudes of error.  

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

 
Last modified: 22/09/2017 16:12

Engineering Tripos Part IIA, 3C8: Machine Design, 2019-20

Module Leader

Dr D J Cole

Lecturers

Dr D J Cole, Prof. M P F Sutcliffe and Dr R L Roebuck

Lab Leader

Dr D J Cole

Timing and Structure

Michaelmas term. 16 lectures.

Aims

The aims of the course are to:

  • Analyse the contact stresses and kinematical behaviour of solid contacts and to understand the design of rolling element bearings and other machine elements.
  • Understand the design of involute gears and appreciate the stress limits and practical problems of gears.
  • To analyse the behaviour of multiple gear drives and planetary gears.
  • Understand how components are combined to make up a mechanical power transmission system, including power matching to achieve a desired operating point.
  • Apply the principles of power matching to hybrid drives.
  • Introduce methods for specifying the type and arrangement of rolling element bearings to meet a specified duty.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Calculate the strength limitations of solid contacts.
  • Analyse the kinematical behaviour of contacts, especially in rotating machinery.
  • Understand and analyse the performance of friction drives.
  • Be familiar with the geometry and kinematics of involute gear wheels and racks.
  • Understand the criterion for tooth bending failure and be able to derive the Hertz pressure at tooth contacts.
  • Use power and torque calculations to analyse epicyclic gears and multiple gear drives.
  • Understand how power transmission components are used as part of a system, including hybrid drives.
  • Determine the operating point and calculate the optimum speed ratio for specified conditions.
  • Select a rolling element bearing for a specific duty.

Content

Rolling element bearings (2L) Dr David Cole

  • Bearing types; life equation

  • Shaft and bearing arrangements 

Gears (6L) Prof. Michael Sutcliffe

  • Geometry and kinematics

  • Failure, root bending and contact fatigue

  • Design and applications

  • Multiple drives and planetary gears

  • Design calculations for planetary gears 

 

Mechanics of contacts (5L) Dr Richard Roebuck

  • Hertzian point contacts

  • Stresses and stiffness

  • Hertzian line contacts

  • Applications in bearings and CVTs

  • Traction drives and CVTs 

 

Power matching (3L) Dr David Cole

  • Introduction and applications: automotive transmission, bicycle transmission

  • Sources and loads; devices and their characteristics

  • Power matching using a simple gear ratio

  • Hybrid drives 

 

Examples papers

Examples Paper 1 - Mechanics of contacts (issued at lecture 9)

Examples Paper 2 - Gears (issued at lecture 3)

Examples Paper 3 - Power matching, rolling element bearings (issued at lecture 1)

(note that this year Examples Paper numbers are not chronological)

 

 

 

Coursework

Power output characteristic of a cyclist

In this experiment the power output charateristic of a cyclist will be determined by holding the heart rate (a proxy for power input) constant and determining the dependence of crank torque and crank power on crank speed. 

Learning objectives

  • to calibrate and operate instrumentation to measure human power output
  • to propose and test an hypothesis using measured data with large inherent uncertainty
  • to understand the power output characteristic of a cyclist

Practical information:

  • Sessions will take place in the Baker Building, South Wing Mechanics Laboratory, during weeks 2 to 8.
  • This activity does involve preliminary work, approximately 30 minutes: read the lab sheet carefully before the session.
  • Book a timeslot online.

Full Technical Report:

Students will have the option to submit a Full Technical Report. The FTR should be a complete, detailed, formal report of the experiment, suitable for publication in an engineering journal. It should include all of the information necessary for the reader to understand the aim, objectives, apparatus, method, results, analysis, discussion and conclusions. In addition the FTR should describe in precise engineering terms the operating principles of three different commercially-available devices for measuring cyclist power output, and comment upon likely sources and magnitudes of error.  

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

 
Last modified: 07/10/2019 11:36

Engineering Tripos Part IIA, 3C8: Machine Design, 2018-19

Module Leader

Dr D J Cole

Lecturers

Dr D J Cole, Prof. M P F Sutcliffe and Dr R L Roebuck

Lab Leader

Dr D J Cole

Timing and Structure

Michaelmas term. 16 lectures.

Aims

The aims of the course are to:

  • Analyse the contact stresses and kinematical behaviour of solid contacts and to understand the design of rolling element bearings and other machine elements.
  • Understand the design of involute gears and appreciate the stress limits and practical problems of gears.
  • To analyse the behaviour of multiple gear drives and planetary gears.
  • Understand how components are combined to make up a mechanical power transmission system, including power matching to achieve a desired operating point.
  • Apply the principles of power matching to hybrid drives.
  • Introduce methods for specifying the type and arrangement of rolling element bearings to meet a specified duty.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Calculate the strength limitations of solid contacts.
  • Analyse the kinematical behaviour of contacts, especially in rotating machinery.
  • Understand and analyse the performance of friction drives.
  • Be familiar with the geometry and kinematics of involute gear wheels and racks.
  • Understand the criterion for tooth bending failure and be able to derive the Hertz pressure at tooth contacts.
  • Use power and torque calculations to analyse epicyclic gears and multiple gear drives.
  • Understand how power transmission components are used as part of a system, including hybrid drives.
  • Determine the operating point and calculate the optimum speed ratio for specified conditions.
  • Select a rolling element bearing for a specific duty.

Content

Mechanics of contacts (5L) Dr Richard Roebuck

  • Hertzian point contacts

  • Stresses and stiffness

  • Hertzian line contacts

  • Applications in bearings and CVTs

  • Traction drives and CVTs 

 

Gears (6L) Prof. Michael Sutcliffe

  • Geometry and kinematics

  • Failure, root bending and contact fatigue

  • Design and applications

  • Multiple drives and planetary gears

  • Design calculations for planetary gears 

 

Power matching (3L) Dr David Cole

  • Introduction and applications: automotive transmission, bicycle transmission

  • Sources and loads; devices and their characteristics

  • Power matching using a simple gear ratio

  • Hybrid drives 

 

Rolling element bearings (2L) Dr David Cole

  • Bearing types; life equation

  • Shaft and bearing arrangements 

Examples papers

Examples paper 1 - Mechanics of contacts (issued at lecture 1)

Examples paper 2 - Gears (issued at lecture 6)

Examples paper 3 - Power matching, rolling element bearings (issued at lecture 12) 

 

Coursework

Power output characteristic of a cyclist

In this experiment the power output charateristic of a cyclist will be determined by holding the heart rate (a proxy for power input) constant and determining the dependence of crank torque and crank power on crank speed. 

Learning objectives

  • to calibrate and operate instrumentation to measure human power output
  • to propose and test an hypothesis using measured data with large inherent uncertainty
  • to understand the power output characteristic of a cyclist

Practical information:

  • Sessions will take place in the Baker Building, South Wing Mechanics Laboratory, during weeks 2 to 8.
  • This activity does involve preliminary work, approximately 30 minutes: read the lab sheet carefully before the session.
  • Book a timeslot online.

Full Technical Report:

Students will have the option to submit a Full Technical Report. The FTR should be a complete, detailed, formal report of the experiment, suitable for publication in an engineering journal. It should include all of the information necessary for the reader to understand the aim, objectives, apparatus, method, results, analysis, discussion and conclusions. In addition the FTR should describe in precise engineering terms the operating principles of three different commercially-available devices for measuring cyclist power output, and comment upon likely sources and magnitudes of error.  

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

 
Last modified: 31/05/2018 10:58

Engineering Tripos Part IIA, 3C8: Machine Design, 2020-21

Module Leader

Prof M P F Sutcliffe

Lecturers

Prof. M P F Sutcliffe and Dr R L Roebuck

Lab Leaders

Prof. M P F Sutcliffe and Dr R L Roebuck

Timing and Structure

Michaelmas term. 16 lectures.

Aims

The aims of the course are to:

  • Analyse the contact stresses and kinematical behaviour of solid contacts and to understand the design of rolling element bearings and other machine elements.
  • Understand the design of involute gears and appreciate the stress limits and practical problems of gears.
  • To analyse the behaviour of multiple gear drives and planetary gears.
  • Understand how components are combined to make up a mechanical power transmission system, including power matching to achieve a desired operating point.
  • Apply the principles of power matching to hybrid drives.
  • Introduce methods for specifying the type and arrangement of rolling element bearings to meet a specified duty.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Calculate the strength limitations of solid contacts.
  • Analyse the kinematical behaviour of contacts, especially in rotating machinery.
  • Understand and analyse the performance of friction drives.
  • Be familiar with the geometry and kinematics of involute gear wheels and racks.
  • Understand the criterion for tooth bending failure and be able to derive the Hertz pressure at tooth contacts.
  • Use power and torque calculations to analyse epicyclic gears and multiple gear drives.
  • Understand how power transmission components are used as part of a system, including hybrid drives.
  • Determine the operating point and calculate the optimum speed ratio for specified conditions.
  • Select a rolling element bearing for a specific duty.

Content

Mechanics of contacts (5L) Dr Richard Roebuck

  • Hertzian point contacts
  • Stresses and stiffness
  • Hertzian line contacts
  • Applications in bearings and CVTs
  • Traction drives and CVTs 

 

Gears (6L) Prof Michael Sutcliffe

  • Geometry and kinematics
  • Failure, root bending and contact fatigue
  • Design and applications
  • Multiple drives and planetary gears
  • Design calculations for planetary gears 

 

Power matching (3L) Prof Michael Sutcliffe

  • Introduction and applications: automotive transmission, bicycle transmission
  • Sources and loads; devices and their characteristics
  • Power matching using a simple gear ratio
  • Hybrid drives 

 

Rolling element bearings (2L) Prof Michael Sutcliffe

  • Bearing types; life equation
  • Shaft and bearing arrangements 

Examples papers

Examples Paper 1 - Mechanics of contacts (issued at lecture 1)

Examples Paper 2 - Gears (issued at lecture 6)

Examples Paper 3 - Power matching, rolling element bearings (issued at lecture 12)

 

 

 

Coursework

Power output characteristic of a cyclist

In this experiment the power output charateristic of a cyclist will be determined by holding the heart rate (a proxy for power input) constant and determining the dependence of crank torque and crank power on crank speed. 

Learning objectives

  • to calibrate and operate instrumentation to measure human power output
  • to propose and test an hypothesis using measured data with large inherent uncertainty
  • to understand the power output characteristic of a cyclist

Practical information:

  • Sessions will take place in the Baker Building, South Wing Mechanics Laboratory, during weeks 2 to 8.
  • This activity does involve preliminary work, approximately 40 minutes: read the lab sheet carefully and watch the demonstration video before the session.
  • Book a timeslot online via the moodle site.
  • The practical needs to be done in pairs, with one of the pair comfortable riding the fixed bike

Full Technical Report:

Students will have the option to submit a Full Technical Report. The FTR should be a complete, detailed, formal report of the experiment, suitable for publication in an engineering journal. It should include all of the information necessary for the reader to understand the aim, objectives, apparatus, method, results, analysis, discussion and conclusions. In addition the FTR should describe in precise engineering terms the operating principles of three different commercially-available devices for measuring cyclist power output, and comment upon likely sources and magnitudes of error. 

Booklists

Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

 
Last modified: 25/09/2020 10:10

Engineering Tripos Part IIA, 3C8: Machine Design, 2023-24

Module Leader

Prof MPF Sutcliffe

Lecturers

Prof M Sutcliffe, Dr R Roebuck, Dr X Na

Lab Leader

Dr X Na

Timing and Structure

Michaelmas term.16 lectures.

Aims

The aims of the course are to:

  • Analyse the contact stresses and kinematical behaviour of solid contacts and to understand the design of rolling element bearings and other machine elements.
  • Understand the design of involute gears and appreciate the stress limits and practical problems of gears.
  • To analyse the behaviour of multiple gear drives and planetary gears.
  • Understand how components are combined to make up a mechanical power transmission system, including power matching to achieve a desired operating point.
  • Apply the principles of power matching to hybrid drives.
  • Introduce methods for specifying the type and arrangement of rolling element bearings to meet a specified duty.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Calculate the strength limitations of solid contacts.
  • Analyse the kinematical behaviour of contacts, especially in rotating machinery.
  • Understand and analyse the performance of friction drives.
  • Be familiar with the geometry and kinematics of involute gear wheels and racks.
  • Understand the criterion for tooth bending failure and be able to derive the Hertz pressure at tooth contacts.
  • Use power and torque calculations to analyse epicyclic gears and multiple gear drives.
  • Understand how power transmission components are used as part of a system, including hybrid drives.
  • Determine the operating point and calculate the optimum speed ratio for specified conditions.
  • Select a rolling element bearing for a specific duty.

Content

Mechanics of contacts (5L) Dr Richard Roebuck

  • Hertzian point contacts
  • Stresses and stiffness
  • Hertzian line contacts
  • Applications in bearings and CVTs
  • Traction drives and CVTs 

 

Gears (6L) Prof. Michael Sutcliffe

  • Geometry and kinematics
  • Failure, root bending and contact fatigue
  • Design and applications
  • Multiple drives and planetary gears
  • Design calculations for planetary gears 

 

Power matching (3L) Dr Xiaoxiang Na

  • Introduction and applications: automotive transmission, bicycle transmission
  • Sources and loads; devices and their characteristics
  • Power matching using a simple gear ratio
  • Hybrid drives 

 

Rolling element bearings (2L) Dr Xiaoxiang Na

  • Bearing types; life equation
  • Shaft and bearing arrangements 

Examples papers

Examples Paper 1 - Mechanics of contacts (issued at lecture 1)

Examples Paper 2 - Gears (issued at lecture 6)

Examples Paper 3 - Power matching, rolling element bearings (issued at lecture 12)

 

 

 

Coursework

Power output characteristic of a cyclist

In this experiment the power output charateristic of a cyclist will be determined by holding the heart rate (a proxy for power input) constant and determining the dependence of crank torque and crank power on crank speed. 

Learning objectives

  • to calibrate and operate instrumentation to measure human power output
  • to propose and test an hypothesis using measured data with large inherent uncertainty
  • to understand the power output characteristic of a cyclist

Practical information:

  • Sessions will take place in the Baker Building, South Wing Mechanics Laboratory, during weeks 2 to 8 (Fridays and Wednesdays, 11am-1pm)
  • This activity does involve preliminary work, approximately 40 minutes: read the lab sheet carefully and watch the demonstration video before the session.
  • Book a timeslot online via the moodle site.
  • The practical needs to be done in pairs, with at least one member of the pair being comfortable riding the stationary bicycle. It is not possible to perform the experiment individually.
  • The lab report must be written individually. All data processing, analysis and interpretation performed after the lab session must be done independently and not in collaboration with each other or anyone else.

Full Technical Report:

Students will have the option to submit a Full Technical Report. The FTR should be a complete, detailed, formal report of the experiment, suitable for publication in an engineering journal. It should include all of the information necessary for the reader to understand the aim, objectives, apparatus, method, results, analysis, discussion and conclusions. In addition the FTR should describe in precise engineering terms the operating principles of three different commercially-available devices for measuring cyclist power output, and comment upon likely sources and magnitudes of error. 

Booklists

Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

 
Last modified: 04/07/2023 15:50

Engineering Tripos Part IIA, 3C8: Machine Design, 2021-22

Module Leader

Dr D.J. Cole

Lecturers

Dr D.J. Cole, Prof M.P.F. Sutcliffe and Dr R L Roebuck

Lab Leader

Dr D.J. Cole

Timing and Structure

Michaelmas term.16 lectures. All lectures to be delivered in-person.

Aims

The aims of the course are to:

  • Analyse the contact stresses and kinematical behaviour of solid contacts and to understand the design of rolling element bearings and other machine elements.
  • Understand the design of involute gears and appreciate the stress limits and practical problems of gears.
  • To analyse the behaviour of multiple gear drives and planetary gears.
  • Understand how components are combined to make up a mechanical power transmission system, including power matching to achieve a desired operating point.
  • Apply the principles of power matching to hybrid drives.
  • Introduce methods for specifying the type and arrangement of rolling element bearings to meet a specified duty.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Calculate the strength limitations of solid contacts.
  • Analyse the kinematical behaviour of contacts, especially in rotating machinery.
  • Understand and analyse the performance of friction drives.
  • Be familiar with the geometry and kinematics of involute gear wheels and racks.
  • Understand the criterion for tooth bending failure and be able to derive the Hertz pressure at tooth contacts.
  • Use power and torque calculations to analyse epicyclic gears and multiple gear drives.
  • Understand how power transmission components are used as part of a system, including hybrid drives.
  • Determine the operating point and calculate the optimum speed ratio for specified conditions.
  • Select a rolling element bearing for a specific duty.

Content

Mechanics of contacts (5L) Dr Richard Roebuck

  • Hertzian point contacts
  • Stresses and stiffness
  • Hertzian line contacts
  • Applications in bearings and CVTs
  • Traction drives and CVTs 

 

Gears (6L) Prof Michael Sutcliffe

  • Geometry and kinematics
  • Failure, root bending and contact fatigue
  • Design and applications
  • Multiple drives and planetary gears
  • Design calculations for planetary gears 

 

Power matching (3L) Dr David Cole

  • Introduction and applications: automotive transmission, bicycle transmission
  • Sources and loads; devices and their characteristics
  • Power matching using a simple gear ratio
  • Hybrid drives 

 

Rolling element bearings (2L) Dr David Cole

  • Bearing types; life equation
  • Shaft and bearing arrangements 

Further notes

3C8 Teaching Arrangements for Michaelmas Term 2021

It is planned to teach this module entirely in person, while following all guidelines and regulations concerning covid. Since the module is likely to have fewer than 100 students, all lectures will be delivered in person. Lectures will be recorded but not live-streamed. Supervision arrangements are still to be finalised. It is hoped that normal supervision arrangements will be possible (groups of 2-4 students, 3 supervsions in Mich term plus one revision supervision), but social distancing constraints might require a blend of in person and online provision. Supervisions will be augmented by video cribs of the examples papers. It is planned that the courework experiment will be performed as normal, with students working in the lab in pairs with appropriate mask wearing and social distancing.

Examples papers

Examples Paper 1 - Mechanics of contacts (issued at lecture 1)

Examples Paper 2 - Gears (issued at lecture 6)

Examples Paper 3 - Power matching, rolling element bearings (issued at lecture 12)

 

 

 

Coursework

Power output characteristic of a cyclist

In this experiment the power output charateristic of a cyclist will be determined by holding the heart rate (a proxy for power input) constant and determining the dependence of crank torque and crank power on crank speed. 

Learning objectives

  • to calibrate and operate instrumentation to measure human power output
  • to propose and test an hypothesis using measured data with large inherent uncertainty
  • to understand the power output characteristic of a cyclist

Practical information:

  • Sessions will take place in the Baker Building, South Wing Mechanics Laboratory, during weeks 2 to 8.
  • This activity does involve preliminary work, approximately 40 minutes: read the lab sheet carefully and watch the demonstration video before the session.
  • Book a timeslot online via the moodle site.
  • The practical needs to be done in pairs, with at least one member of the pair being comfortable riding the stationary bicycle

Full Technical Report:

Students will have the option to submit a Full Technical Report. The FTR should be a complete, detailed, formal report of the experiment, suitable for publication in an engineering journal. It should include all of the information necessary for the reader to understand the aim, objectives, apparatus, method, results, analysis, discussion and conclusions. In addition the FTR should describe in precise engineering terms the operating principles of three different commercially-available devices for measuring cyclist power output, and comment upon likely sources and magnitudes of error. 

Booklists

Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

 
Last modified: 24/09/2021 15:27

Engineering Tripos Part IIA, 3C8: Machine Design, 2022-23

Module Leader

Prof. DJ Cole

Lecturers

Prof. DJ Cole, Prof. MPF Sutcliffe and Dr RL Roebuck

Lab Leader

Prof. DJ Cole

Timing and Structure

Michaelmas term.16 lectures.

Aims

The aims of the course are to:

  • Analyse the contact stresses and kinematical behaviour of solid contacts and to understand the design of rolling element bearings and other machine elements.
  • Understand the design of involute gears and appreciate the stress limits and practical problems of gears.
  • To analyse the behaviour of multiple gear drives and planetary gears.
  • Understand how components are combined to make up a mechanical power transmission system, including power matching to achieve a desired operating point.
  • Apply the principles of power matching to hybrid drives.
  • Introduce methods for specifying the type and arrangement of rolling element bearings to meet a specified duty.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Calculate the strength limitations of solid contacts.
  • Analyse the kinematical behaviour of contacts, especially in rotating machinery.
  • Understand and analyse the performance of friction drives.
  • Be familiar with the geometry and kinematics of involute gear wheels and racks.
  • Understand the criterion for tooth bending failure and be able to derive the Hertz pressure at tooth contacts.
  • Use power and torque calculations to analyse epicyclic gears and multiple gear drives.
  • Understand how power transmission components are used as part of a system, including hybrid drives.
  • Determine the operating point and calculate the optimum speed ratio for specified conditions.
  • Select a rolling element bearing for a specific duty.

Content

Mechanics of contacts (5L) Dr Richard Roebuck

  • Hertzian point contacts
  • Stresses and stiffness
  • Hertzian line contacts
  • Applications in bearings and CVTs
  • Traction drives and CVTs 

 

Gears (6L) Prof. Michael Sutcliffe

  • Geometry and kinematics
  • Failure, root bending and contact fatigue
  • Design and applications
  • Multiple drives and planetary gears
  • Design calculations for planetary gears 

 

Power matching (3L) Prof. David Cole

  • Introduction and applications: automotive transmission, bicycle transmission
  • Sources and loads; devices and their characteristics
  • Power matching using a simple gear ratio
  • Hybrid drives 

 

Rolling element bearings (2L) Prof. David Cole

  • Bearing types; life equation
  • Shaft and bearing arrangements 

Examples papers

Examples Paper 1 - Mechanics of contacts (issued at lecture 1)

Examples Paper 2 - Gears (issued at lecture 6)

Examples Paper 3 - Power matching, rolling element bearings (issued at lecture 12)

 

 

 

Coursework

Power output characteristic of a cyclist

In this experiment the power output charateristic of a cyclist will be determined by holding the heart rate (a proxy for power input) constant and determining the dependence of crank torque and crank power on crank speed. 

Learning objectives

  • to calibrate and operate instrumentation to measure human power output
  • to propose and test an hypothesis using measured data with large inherent uncertainty
  • to understand the power output characteristic of a cyclist

Practical information:

  • Sessions will take place in the Baker Building, South Wing Mechanics Laboratory, during weeks 2 to 8 (Fridays and Wednesdays, 11am-1pm)
  • This activity does involve preliminary work, approximately 40 minutes: read the lab sheet carefully and watch the demonstration video before the session.
  • Book a timeslot online via the moodle site.
  • The practical needs to be done in pairs, with at least one member of the pair being comfortable riding the stationary bicycle. It is not possible to perform the experiment individually.
  • The lab report must be written individually. All data processing, analysis and interpretation performed after the lab session must be done independently and not in collaboration with each other or anyone else.

Full Technical Report:

Students will have the option to submit a Full Technical Report. The FTR should be a complete, detailed, formal report of the experiment, suitable for publication in an engineering journal. It should include all of the information necessary for the reader to understand the aim, objectives, apparatus, method, results, analysis, discussion and conclusions. In addition the FTR should describe in precise engineering terms the operating principles of three different commercially-available devices for measuring cyclist power output, and comment upon likely sources and magnitudes of error. 

Booklists

Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

 
Last modified: 29/09/2022 11:11

Engineering Tripos Part IIA, 3C8: Machine Design, 2024-25

Module Leader

Prof MPF Sutcliffe

Lecturers

Prof M Sutcliffe, Dr R Roebuck, Dr X Na

Lab Leader

Dr X Na

Timing and Structure

Michaelmas term.16 lectures.

Aims

The aims of the course are to:

  • Analyse the contact stresses and kinematical behaviour of solid contacts and to understand the design of rolling element bearings and other machine elements.
  • Understand the design of involute gears and appreciate the stress limits and practical problems of gears.
  • To analyse the behaviour of multiple gear drives and planetary gears.
  • Understand how components are combined to make up a mechanical power transmission system, including power matching to achieve a desired operating point.
  • Apply the principles of power matching to hybrid drives.
  • Introduce methods for specifying the type and arrangement of rolling element bearings to meet a specified duty.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Calculate the strength limitations of solid contacts.
  • Analyse the kinematical behaviour of contacts, especially in rotating machinery.
  • Understand and analyse the performance of friction drives.
  • Be familiar with the geometry and kinematics of involute gear wheels and racks.
  • Understand the criterion for tooth bending failure and be able to derive the Hertz pressure at tooth contacts.
  • Use power and torque calculations to analyse epicyclic gears and multiple gear drives.
  • Understand how power transmission components are used as part of a system, including hybrid drives.
  • Determine the operating point and calculate the optimum speed ratio for specified conditions.
  • Select a rolling element bearing for a specific duty.

Content

Mechanics of contacts (5L) Dr Richard Roebuck

  • Hertzian point contacts
  • Stresses and stiffness
  • Hertzian line contacts
  • Applications in bearings and CVTs
  • Traction drives and CVTs 

 

Gears (6L) Prof. Michael Sutcliffe

  • Geometry and kinematics
  • Failure, root bending and contact fatigue
  • Design and applications
  • Multiple drives and planetary gears
  • Design calculations for planetary gears 

 

Power matching (3L) Dr Xiaoxiang Na

  • Introduction and applications: automotive transmission, bicycle transmission
  • Sources and loads; devices and their characteristics
  • Power matching using a simple gear ratio
  • Hybrid drives 

 

Rolling element bearings (2L) Dr Xiaoxiang Na

  • Bearing types; life equation
  • Shaft and bearing arrangements 

Examples papers

Examples Paper 1 - Mechanics of contacts (issued at lecture 1)

Examples Paper 2 - Gears (issued at lecture 6)

Examples Paper 3 - Power matching, rolling element bearings (issued at lecture 12)

 

 

 

Coursework

Power output characteristic of a cyclist

In this experiment the power output charateristic of a cyclist will be determined by holding the heart rate (a proxy for power input) constant and determining the dependence of crank torque and crank power on crank speed. 

Learning objectives

  • to calibrate and operate instrumentation to measure human power output
  • to propose and test an hypothesis using measured data with large inherent uncertainty
  • to understand the power output characteristic of a cyclist

Practical information:

  • Sessions will take place in the Baker Building, South Wing Mechanics Laboratory, during weeks 2 to 8 (Fridays and Wednesdays, 11am-1pm)
  • This activity does involve preliminary work, approximately 40 minutes: read the lab sheet carefully and watch the demonstration video before the session.
  • Book a timeslot online via the moodle site.
  • The practical needs to be done in pairs, with at least one member of the pair being comfortable riding the stationary bicycle. It is not possible to perform the experiment individually.
  • The lab report must be written individually. All data processing, analysis and interpretation performed after the lab session must be done independently and not in collaboration with each other or anyone else.

Full Technical Report:

Students will have the option to submit a Full Technical Report. The FTR should be a complete, detailed, formal report of the experiment, suitable for publication in an engineering journal. It should include all of the information necessary for the reader to understand the aim, objectives, apparatus, method, results, analysis, discussion and conclusions. In addition the FTR should describe in precise engineering terms the operating principles of three different commercially-available devices for measuring cyclist power output, and comment upon likely sources and magnitudes of error. 

Booklists

Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

 
Last modified: 31/05/2024 07:28

Pages

Subscribe to E3