Engineering Tripos Part IIA, 3D9: Construction Management, 2025-26
Module Leader
Lecturer
Lab Leader
Timing and Structure
Michaelmas term, 16 lectures
Aims
The aims of the course are to:
- Familiarise students with core methods and principles for managing construction projects and businesses.
- Introduce planning, scheduling, monitoring, productivity, earthworks, and risk techniques.
- Understand the fundamentals of Building Information Modelling and Digital Twins
- Explore procurement, contracts, health and safety, and sustainability in a construction context.
Objectives
As specific objectives, by the end of the course students should be able to:
- Grasp the key challenges associated with managing major construction projects.
- Implement lean construction and production management techniques effectively.
- Analyse various bidding strategies and procurement methods.
- Design appropriate organizational structures and ownership models tailored to different construction environments at local, national, and international levels.
- Utilize Building Information Modelling (BIM) and Digital Twins for planning, simulation, and project management.
- Grasp the significance of information management in the construction industry.
- Identify risks, explore organizational structures, and understand the implications of contract law.
- Learn the basics of health, safety, and wellbeing within the construction sector.
Content
Examples papers
Three example papers related to the lecture course will be distributed by the end of each section of the module. Please check the 3D9 Moodle page for updates.
Coursework
Booklists
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D1
Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.
S1
The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.
S3
Understanding of the requirement for engineering activities to promote sustainable development.
S4
Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
Last modified: 30/09/2025 15:46
Engineering Tripos Part IIB, 4D14: Contaminated Land & Waste Containment, 2022-23
Module Leader
Lecturers
Prof A Al-Tabbaa and Prof G Madabhushi
Lab Leader
Timing and Structure
Michaelmas term. 14 lectures + 1 examples classes + 1 invited lecture + coursework. Assessment: 75% exam/25% coursework.
Aims
The aims of the course are to:
- provide an in-depth look at aspects of contaminated land and waste containment including sources of contamination, characterisation of waste, assessment, containment, remediation and sustainable regeneration.
Objectives
As specific objectives, by the end of the course students should be able to:
- develop an appreciation of current and future problems and legislations related to contaminated land and waste containment;
- develop good understand of contaminated land remediation options and selection decisions.
- develop an understanding of decision support tools for contaminated land management.
- identify potentially hazardous chemicals and sources of contamination.
- appreciate the crucial stages in dealing with and managing contaminated land.
- assess the risk of pollution hazards from buried wastes.
- appreciate the legal, technical and health constraints on the design of waste repositories.
- discuss the design of appropriate containment facilities.
Content
The module starts with an overview of contaminated land and waste containment and a review of contaminants in the ground and methods of groundwater analysis. This is followed by l ectures on disposal of waste in the ground to develop an understanding of the safe design of landfill sites for disposal of waste materials. Finally the module looks at contaminated land remendiation, management and aspects of sustainable regeneration
Introduction to contaminated land and waste containment (1L, Prof A Al-Tabbaa)
- Introduction and overview of contaminated land remediation and waste and its containment;
- Introduction to relevant legislation
Disposal of waste in the ground (5L, Prof G Madabhushi; 1 example class)
- Characterisation of waste materials;
- Estimation of landfill size, cost of waste disposal, Landfill Tax
- Design of barriers: grout curtain, slurry wall, geomembranes;
- Constructed facilities: design of landfill and hazardous waste repositories
Contaminants and analysis in soil and water (2L, Dr R J Lynch)
- Contamination in the environment, introduction of inorganic and organic contaminants, and their analysis;
- Demonstration of pollutant analysis in soils and water
Contaminated land remediation and regeneration (6L, Prof A Al-Tabbaa, 1L Guest Speaker)
- Land contamination and remediation, sources and solutions including case studies;
- Sustainable remediation of contaminated land;
- Decision support tools including cost-benefit analysis, life cycle assessment and multi-criteria analysis;
- Sustainable brownfield land management and regeneration
Coursework
Cost-benefit analysis of remediation techniques at a contaminated site.
| Coursework | Format |
Due date & marks |
|---|---|---|
|
Qualitative appraisal for the remediation of a contaminated site The coursework will involve carrying a qualitative appraisal, using the Environment Agency 'Cost-benefit analysis for remediation of land contamination' document, comparing six remediation techniques on a real contaminated site. Extracts from the site investigation report will be provided and the site is to be redeveloped for industrial use. Learning objectives:
|
Individual Report anonymously marked |
by noon on Friday 9 December 2022 [15/60] |
|
|
|
|
Booklists
Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D1
Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.
D3
Identify and manage cost drivers.
D6
Manage the design process and evaluate outcomes.
S1
The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.
S3
Understanding of the requirement for engineering activities to promote sustainable development.
S4
Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 26/08/2022 18:19
Engineering Tripos Part IIB, 4A15: Acoustics, 2023-24
Module Leader
Lecturers
Dr A. Agarwal and Dr W. Graham
Timing and Structure
Lent term: 16 lectures + 2 examples classes; Assessment: 100% exam
Prerequisites
No prerequisites. The module would be of interest to students with Aero, Mechnical, Bio or Civil Engineering background.
Aims
The aims of the course are to:
- analyse and solve a range of practical engineering problems associated with acoustics.
Objectives
As specific objectives, by the end of the course students should be able to:
- understand what sound is and how we perceive it
- understand how sound is generated and propagated
- understand the acoustics of a wide range of music and noise production
Content
We will analyse and solve a range of practical engineering problems associated with acoustics. Examples include modelling of noise sources from jets, fans, musical instruments, human voice, kettles, dripping taps, whistling mice, singing flames, etc. We will also study ways to reduce noise either at the source or through acoustic damping. Upon completion of this module, the students would be well placed to pursue academic research in the area of acoustics and related fields or to work in industry (the topics covered in the course is of interest to GE, Rolls-Royce, Airbus, Dyson, Mitsubishi Heavy Industries, automotive companies, music and biomedical industries, and acoustic consultancies).
What is sound and how does it propagate? (5L) (Dr A Agarwal)
- Introduction
- The wave equation
-
Some simple 3D wave fields (plane waves, surface waves and spherical waves)
- Sound transmission through different media
Simples sounds sources (2L) (Dr A Agarwal)
- Pulsating sphere
- Oscillating sphere
- Example: loudspeaker with and without a cabinet
General solution to wave eqn (2L) (Dr. A Agarwal)
- Green's function
- Sound from general mass and force sources (examples, Bliz siren and singing telephone wires)
Jet noise (Dr A Agarwal) (1 L)
- Scaling of jet noise. How much does jet noise increase by if we double the jet's velocity?
- What do jets and tuning forks have in common?
- Lighthill's acoustic analogy
- Sound of aircraft jets and handdriers
Duct acoustics (2 L) (Dr A Agarwal)
- Rectangular ducts (example, sound box)
- Low-frequency sound in ducts
- Circular ducts
- Acoustic liners (Helmholtz resonator, blowing over a beer bottle)
Musical acoustics & everyday things (3L) (Drs A Agarwal)
- String instruments
- Wind instruments
- Brass instruments
- Whistling of steam kettles and Rayleigh's Bird Call
- Acoustics of dripping taps
Vocalisation (0.5 L) (Dr A Agarwal)
- Human speech, singing and overtone singing
- Mice mating calls
Fan noise (1L) (Dr A Agarwal)
- Rotor alone noise
- Rotor-stator interaction noise
Thermoacoustics instability (0.5 L) (Dr A Agarwal)
- Rijke tube experiment (singing flames)
Booklists
Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 30/05/2023 15:25
Engineering Tripos Part IIB, 4A15: Acoustics, 2025-26
Module Leader
Lecturers
Dr A. Agarwal and Dr W. Graham
Timing and Structure
Lent term: 16 lectures + 2 examples classes; Assessment: 100% exam
Prerequisites
No prerequisites. The module would be of interest to students with Aero, Mechnical, Bio or Civil Engineering background.
Aims
The aims of the course are to:
- analyse and solve a range of practical engineering problems associated with acoustics.
Objectives
As specific objectives, by the end of the course students should be able to:
- understand what sound is and how we perceive it
- understand how sound is generated and propagated
- understand the acoustics of a wide range of music and noise production
Content
We will analyse and solve a range of practical engineering problems associated with acoustics. Examples include modelling of noise sources from jets, fans, musical instruments, human voice, kettles, dripping taps, whistling mice, singing flames, etc. We will also study ways to reduce noise either at the source or through acoustic damping. Upon completion of this module, the students would be well placed to pursue academic research in the area of acoustics and related fields or to work in industry (the topics covered in the course is of interest to GE, Rolls-Royce, Airbus, Dyson, Mitsubishi Heavy Industries, automotive companies, music and biomedical industries, and acoustic consultancies).
What is sound and how does it propagate? (5L) (Dr A Agarwal)
- Introduction
- The wave equation
-
Some simple 3D wave fields (plane waves, surface waves and spherical waves)
- Sound transmission through different media
Simples sounds sources (2L) (Dr A Agarwal)
- Pulsating sphere
- Oscillating sphere
- Example: loudspeaker with and without a cabinet
General solution to wave eqn (2L) (Dr. A Agarwal)
- Green's function
- Sound from general mass and force sources (examples, Bliz siren and singing telephone wires)
Jet noise (Dr A Agarwal) (1 L)
- Scaling of jet noise. How much does jet noise increase by if we double the jet's velocity?
- What do jets and tuning forks have in common?
- Lighthill's acoustic analogy
- Sound of aircraft jets and handdriers
Duct acoustics (2 L) (Dr A Agarwal)
- Rectangular ducts (example, sound box)
- Low-frequency sound in ducts
- Circular ducts
- Acoustic liners (Helmholtz resonator, blowing over a beer bottle)
Musical acoustics & everyday things (3L) (Drs A Agarwal)
- String instruments
- Wind instruments
- Brass instruments
- Whistling of steam kettles and Rayleigh's Bird Call
- Acoustics of dripping taps
Vocalisation (0.5 L) (Dr A Agarwal)
- Human speech, singing and overtone singing
- Mice mating calls
Fan noise (1L) (Dr A Agarwal)
- Rotor alone noise
- Rotor-stator interaction noise
Thermoacoustics instability (0.5 L) (Dr A Agarwal)
- Rijke tube experiment (singing flames)
Booklists
Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 04/06/2025 13:24
Engineering Tripos Part IIB, 4A15: Acoustics, 2022-23
Module Leader
Lecturers
Dr A. Agarwal and Dr W. Graham
Timing and Structure
Lent term: 16 lectures + 2 examples classes; Assessment: 100% exam
Prerequisites
No prerequisites. The module would be of interest to students with Aero, Mechnical, Bio or Civil Engineering background.
Aims
The aims of the course are to:
- analyse and solve a range of practical engineering problems associated with acoustics.
Objectives
As specific objectives, by the end of the course students should be able to:
- understand what sound is and how we perceive it
- understand how sound is generated and propagated
- understand the acoustics of a wide range of music and noise production
Content
We will analyse and solve a range of practical engineering problems associated with acoustics. Examples include modelling of noise sources from jets, fans, musical instruments, human voice, kettles, dripping taps, whistling mice, singing flames, etc. We will also study ways to reduce noise either at the source or through acoustic damping. Upon completion of this module, the students would be well placed to pursue academic research in the area of acoustics and related fields or to work in industry (the topics covered in the course is of interest to GE, Rolls-Royce, Airbus, Dyson, Mitsubishi Heavy Industries, automotive companies, music and biomedical industries, and acoustic consultancies).
What is sound and how does it propagate? (5L) (Dr A Agarwal)
- Introduction
- The wave equation
-
Some simple 3D wave fields (plane waves, surface waves and spherical waves)
- Sound transmission through different media
Simples sounds sources (2L) (Dr A Agarwal)
- Pulsating sphere
- Oscillating sphere
- Example: loudspeaker with and without a cabinet
General solution to wave eqn (2L) (Dr. A Agarwal)
- Green's function
- Sound from general mass and force sources (examples, Bliz siren and singing telephone wires)
Jet noise (Dr A Agarwal) (1 L)
- Scaling of jet noise. How much does jet noise increase by if we double the jet's velocity?
- What do jets and tuning forks have in common?
- Lighthill's acoustic analogy
- Sound of aircraft jets and handdriers
Duct acoustics (2 L) (Dr A Agarwal)
- Rectangular ducts (example, sound box)
- Low-frequency sound in ducts
- Circular ducts
- Acoustic liners (Helmholtz resonator, blowing over a beer bottle)
Musical acoustics & everyday things (3L) (Drs A Agarwal)
- String instruments
- Wind instruments
- Brass instruments
- Whistling of steam kettles and Rayleigh's Bird Call
- Acoustics of dripping taps
Vocalisation (0.5 L) (Dr A Agarwal)
- Human speech, singing and overtone singing
- Mice mating calls
Fan noise (1L) (Dr A Agarwal)
- Rotor alone noise
- Rotor-stator interaction noise
Thermoacoustics instability (0.5 L) (Dr A Agarwal)
- Rijke tube experiment (singing flames)
Booklists
Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 24/05/2022 12:55
Engineering Tripos Part IIA, 3G2: Mathematical Physiology, 2017-18
Module Leader
Lecturers
Dr A Kabla and Prof M Lengyel
Lab Leader
Timing and Structure
Lent term. 16 lectures.
Aims
The aims of the course are to:
- Provide a basic understanding of what functions are necessary for a living organism, and how they are achieved.
- Provide an overview of the modelling techniques that are used to understand those functions.
Objectives
As specific objectives, by the end of the course students should be able to:
- Express physical, mechanical and chemical principles in the context of physiological processes
- Understand underlying assumptions and check their validity
- Use mathematical and computational tools to identify and discuss solutions
Content
A wide variety of topics are touched upon, from biochemistry and cellular function to neural activity and respiration. In all cases, the emphasis is on finding the simplest mathematical model that describes the observations and allows us to identify the relevant physiological parameters. The models often take the form of a simple functional relationship between two variables, or a set of coupled differential equations. The course tries to show where the equations come from and lead to: what assumptions are needed and what simple and robust conclusions can be drawn.
Physical and chemical principles (4L A Kabla)
- Molecular transport, diffusion, osmotic pressure
- Chemical reactions, law of mass action, kinetics
- Enzyme catalysis, Michaelis-Menten model, cooperativity.
- Gases, partial pressures and solubility
Electrophysiology (5L T OLeary)
- Biophysical bases of cellular electrogenesis and basic ingredients of the equivalent circuit model.
- Action potential generation in neurons: Hodgkin-Huxley model.
- Phase plane analysis;reduced models,extension to bursting and pacemaking activity
- Signal propagation along dendritic and axonal projections, and across chemical and electrical synapses. .
Blood Physiology (3L A Kabla)
- Blood physiology, composition
- Gas storage in red blood cells
- Blood rheology, Cason equation, flow in capilleries
Physiological transport systems (4L A Kabla)
- Circulatory system, heart, cardiac output, arterial pulse
- Vessel compliance, pulsatile flow profile
- flow in caplliery beds, filtration
- Respiratory system, gas exchange in the lungs, ventilation-perfusion
Coursework
Physiology of speech production.
Learning objectives:
- Learn about how vocal folds generate sound
- Understand the process of modeling a complex physiological process, from hypothesis to numerical solutions.
- Learn how to solve numerically non-linear differential equations.
- Develop Python/Matlab skills
Practical information:
- Sessions will take place in the EIETL, around week 3.
- This activity involves preliminary work (about 1h).
Full Technical Report:
Students will have the option to produce a Full Technical Report (FTR).
Booklists
Please see the Booklist for Part IIA Courses for module references.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
Last modified: 07/08/2017 08:34
Engineering Tripos Part IIA, 3G2: Mathematical Physiology, 2021-22
Module Leader
Lecturers
Dr A Kabla, Dr Y Ahmadian
Lab Leader
Timing and Structure
Lent term. 16 lectures.
Aims
The aims of the course are to:
- introduce students to the key physiological functions that are necessary for a living organism,
- develop a interdisciplinary analytical approach to quantitatively describe these functions,
- provide an overview of the modelling techniques that are commonly used to understand and predict physiological processes.
Objectives
As specific objectives, by the end of the course students should be able to:
- identify the key physiological processes at play at all relevant scales, from molecules to organisms,
- apply physical, mechanical and chemical principles in the context of physiological processes,
- critically discuss the validity of underlying assumptions and check their validity,
- use mathematical and computational tools to determine and interpret model solutions.
Content
A wide variety of topics are touched upon, from biochemistry and cellular function to neural activity and respiration. In all cases, the emphasis is on finding the simplest mathematical model that describes the observations and allows us to identify the relevant physiological parameters. The models often take the form of a simple functional relationship between two variables, or a set of coupled differential equations. The course tries to show where the equations come from and lead to: what assumptions are needed and what simple and robust conclusions can be drawn.
Physical and chemical principles (4L A Kabla)
- Molecular transport, diffusion, osmotic pressure
- Chemical reactions, law of mass action, kinetics
- Enzyme catalysis, Michaelis-Menten model, cooperativity.
- Gases, partial pressures and solubility
Electrophysiology (5L)
- Biophysical bases of cellular electrogenesis and basic ingredients of the equivalent circuit model.
- Action potential generation in neurons: Hodgkin-Huxley model.
- Phase plane analysis;reduced models,extension to bursting and pacemaking activity
- Signal propagation along dendritic and axonal projections, and across chemical and electrical synapses. .
Blood Physiology (3L A Kabla)
- Blood physiology, composition
- Gas storage in red blood cells
- Blood rheology, Cason equation, flow in capilleries
Physiological transport systems (4L A Kabla)
- Circulatory system, heart, cardiac output, arterial pulse
- Vessel compliance, pulsatile flow profile
- Blood flow in caplliery beds, filtration
- Respiratory system, gas exchange in the lungs, ventilation-perfusion
Coursework
Physiology of speech production.
Learning objectives:
At the end of this activity, students will be able to:
- describe how phonation occurs in humans and how vocal folds exploit a steady flow of air from the lungs to generate steady oscillations;
- model the movement of the vocal folds, from stating hypotheses to calculating numerical solutions;
- use standard numerical packages to solve non-linear ordinary differential equations.
- critically discuss the different dynamic regimes observed in the model and their significance.
Practical information:
- Sessions will take place in the EIETL, around week 3.
- This activity involves preliminary work (about 1h).
Full Technical Report:
Students will have the option to produce a Full Technical Report (FTR).
Booklists
Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
Last modified: 24/09/2021 13:59
Engineering Tripos Part IIA, 3G2: Mathematical Physiology, 2019-20
Module Leader
Lecturers
Dr A Kabla, Prof M Lengyel
Lab Leader
Timing and Structure
Lent term. 16 lectures.
Aims
The aims of the course are to:
- Identify the key physiological functions that are necessary for a living organism,
- Develop a multidisciplinary analytical approach to quantitatively describe these functions,
- Provide an overview of the modelling techniques that are commonly used to understand and predict physiological processes.
Objectives
As specific objectives, by the end of the course students should be able to:
- Gain awareness of key physiological processes at all relevant scales, from moelcules to organisms.
- Express physical, mechanical and chemical principles in the context of physiological processes
- Understand underlying assumptions and check their validity
- Use mathematical and computational tools to identify and discuss solutions
Content
A wide variety of topics are touched upon, from biochemistry and cellular function to neural activity and respiration. In all cases, the emphasis is on finding the simplest mathematical model that describes the observations and allows us to identify the relevant physiological parameters. The models often take the form of a simple functional relationship between two variables, or a set of coupled differential equations. The course tries to show where the equations come from and lead to: what assumptions are needed and what simple and robust conclusions can be drawn.
Physical and chemical principles (4L A Kabla)
- Molecular transport, diffusion, osmotic pressure
- Chemical reactions, law of mass action, kinetics
- Enzyme catalysis, Michaelis-Menten model, cooperativity.
- Gases, partial pressures and solubility
Electrophysiology (5L M Lengyel)
- Biophysical bases of cellular electrogenesis and basic ingredients of the equivalent circuit model.
- Action potential generation in neurons: Hodgkin-Huxley model.
- Phase plane analysis;reduced models,extension to bursting and pacemaking activity
- Signal propagation along dendritic and axonal projections, and across chemical and electrical synapses. .
Blood Physiology (3L A Kabla)
- Blood physiology, composition
- Gas storage in red blood cells
- Blood rheology, Cason equation, flow in capilleries
Physiological transport systems (4L A Kabla)
- Circulatory system, heart, cardiac output, arterial pulse
- Vessel compliance, pulsatile flow profile
- Blood flow in caplliery beds, filtration
- Respiratory system, gas exchange in the lungs, ventilation-perfusion
Coursework
Physiology of speech production.
Learning objectives:
- Learn about vocal folds and how they generate sound
- Gain experience with the modeling of a complex physiological process, from hypothesis to numerical solutions.
- Learn how to solve numerically non-linear differential equations.
- Develop computing skills
Practical information:
- Sessions will take place in the EIETL, around week 3.
- This activity involves preliminary work (about 1h).
Full Technical Report:
Students will have the option to produce a Full Technical Report (FTR).
Booklists
Please see the Booklist for Part IIA Courses for module references.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
Last modified: 09/06/2019 16:39
Engineering Tripos Part IIA, 3G2: Mathematical Physiology, 2024-25
Module Leader
Lecturers
Prof A Kabla, Prof Mate Lengyel
Lab Leader
Timing and Structure
Lent term. 16 lectures.
Aims
The aims of the course are to:
- introduce students to the key physiological functions that are necessary for a living organism,
- develop a interdisciplinary analytical approach to quantitatively describe these functions,
- provide an overview of the modelling techniques that are commonly used to understand and predict physiological processes.
Objectives
As specific objectives, by the end of the course students should be able to:
- identify the key physiological processes at play at all relevant scales, from molecules to organisms,
- apply physical, mechanical and chemical principles in the context of physiological processes,
- critically discuss the validity of underlying assumptions and check their validity,
- use mathematical and computational tools to determine and interpret model solutions.
Content
A wide variety of topics are touched upon, from biochemistry and cellular function to neural activity and respiration. In all cases, the emphasis is on finding the simplest mathematical model that describes the observations and allows us to identify the relevant physiological parameters. The models often take the form of a simple functional relationship between two variables, or a set of coupled differential equations. The course tries to show where the equations come from and lead to: what assumptions are needed and what simple and robust conclusions can be drawn.
Physical and chemical principles (4L A Kabla)
- Molecular transport, diffusion, osmotic pressure
- Chemical reactions, law of mass action, kinetics
- Enzyme catalysis, Michaelis-Menten model, cooperativity.
- Gases, partial pressures and solubility
Electrophysiology (5L)
- Biophysical bases of cellular electrogenesis and basic ingredients of the equivalent circuit model.
- Action potential generation in neurons: Hodgkin-Huxley model.
- Phase plane analysis;reduced models,extension to bursting and pacemaking activity
- Signal propagation along dendritic and axonal projections, and across chemical and electrical synapses. .
Blood Physiology (3L A Kabla)
- Blood physiology, composition
- Gas storage in red blood cells
- Blood rheology, Cason equation, flow in capilleries
Physiological transport systems (4L A Kabla)
- Circulatory system, heart, cardiac output, arterial pulse
- Vessel compliance, pulsatile flow profile
- Blood flow in caplliery beds, filtration
- Respiratory system, gas exchange in the lungs, ventilation-perfusion
Coursework
Physiology of speech production.
Learning objectives:
At the end of this activity, students will be able to:
- describe how phonation occurs in humans and how vocal folds exploit a steady flow of air from the lungs to generate steady oscillations;
- model the movement of the vocal folds, from stating hypotheses to calculating numerical solutions;
- use standard numerical packages to solve non-linear ordinary differential equations.
- critically discuss the different dynamic regimes observed in the model and their significance.
Practical information:
- Sessions will take place in the EIETL, around week 3.
- This activity involves preliminary work (about 1h).
Full Technical Report:
Students will have the option to produce a Full Technical Report (FTR).
Booklists
Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
Last modified: 31/05/2024 09:55
Engineering Tripos Part IIA, 3G2: Mathematical Physiology, 2022-23
Module Leader
Lecturers
Prof A Kabla, Prof Mate Lengyel
Lab Leader
Timing and Structure
Lent term. 16 lectures.
Aims
The aims of the course are to:
- introduce students to the key physiological functions that are necessary for a living organism,
- develop a interdisciplinary analytical approach to quantitatively describe these functions,
- provide an overview of the modelling techniques that are commonly used to understand and predict physiological processes.
Objectives
As specific objectives, by the end of the course students should be able to:
- identify the key physiological processes at play at all relevant scales, from molecules to organisms,
- apply physical, mechanical and chemical principles in the context of physiological processes,
- critically discuss the validity of underlying assumptions and check their validity,
- use mathematical and computational tools to determine and interpret model solutions.
Content
A wide variety of topics are touched upon, from biochemistry and cellular function to neural activity and respiration. In all cases, the emphasis is on finding the simplest mathematical model that describes the observations and allows us to identify the relevant physiological parameters. The models often take the form of a simple functional relationship between two variables, or a set of coupled differential equations. The course tries to show where the equations come from and lead to: what assumptions are needed and what simple and robust conclusions can be drawn.
Physical and chemical principles (4L A Kabla)
- Molecular transport, diffusion, osmotic pressure
- Chemical reactions, law of mass action, kinetics
- Enzyme catalysis, Michaelis-Menten model, cooperativity.
- Gases, partial pressures and solubility
Electrophysiology (5L)
- Biophysical bases of cellular electrogenesis and basic ingredients of the equivalent circuit model.
- Action potential generation in neurons: Hodgkin-Huxley model.
- Phase plane analysis;reduced models,extension to bursting and pacemaking activity
- Signal propagation along dendritic and axonal projections, and across chemical and electrical synapses. .
Blood Physiology (3L A Kabla)
- Blood physiology, composition
- Gas storage in red blood cells
- Blood rheology, Cason equation, flow in capilleries
Physiological transport systems (4L A Kabla)
- Circulatory system, heart, cardiac output, arterial pulse
- Vessel compliance, pulsatile flow profile
- Blood flow in caplliery beds, filtration
- Respiratory system, gas exchange in the lungs, ventilation-perfusion
Coursework
Physiology of speech production.
Learning objectives:
At the end of this activity, students will be able to:
- describe how phonation occurs in humans and how vocal folds exploit a steady flow of air from the lungs to generate steady oscillations;
- model the movement of the vocal folds, from stating hypotheses to calculating numerical solutions;
- use standard numerical packages to solve non-linear ordinary differential equations.
- critically discuss the different dynamic regimes observed in the model and their significance.
Practical information:
- Sessions will take place in the EIETL, around week 3.
- This activity involves preliminary work (about 1h).
Full Technical Report:
Students will have the option to produce a Full Technical Report (FTR).
Booklists
Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
Last modified: 23/11/2022 08:42

