Engineering Tripos Part IIA, 3G2: Mathematical Physiology, 2018-19
Module Leader
Lecturers
Prof M Lengyel, Prof G Csanyi, Dr T Savin, Dr A Agarwal
Lab Leader
Timing and Structure
Lent term. 16 lectures.
Aims
The aims of the course are to:
- Provide a basic understanding of what functions are necessary for a living organism, and how they are achieved.
- Provide an overview of the modelling techniques that are used to understand those functions.
Objectives
As specific objectives, by the end of the course students should be able to:
- Express physical, mechanical and chemical principles in the context of physiological processes
- Understand underlying assumptions and check their validity
- Use mathematical and computational tools to identify and discuss solutions
Content
A wide variety of topics are touched upon, from biochemistry and cellular function to neural activity and respiration. In all cases, the emphasis is on finding the simplest mathematical model that describes the observations and allows us to identify the relevant physiological parameters. The models often take the form of a simple functional relationship between two variables, or a set of coupled differential equations. The course tries to show where the equations come from and lead to: what assumptions are needed and what simple and robust conclusions can be drawn.
Physical and chemical principles (4L A Kabla)
- Molecular transport, diffusion, osmotic pressure
- Chemical reactions, law of mass action, kinetics
- Enzyme catalysis, Michaelis-Menten model, cooperativity.
- Gases, partial pressures and solubility
Electrophysiology (5L T OLeary)
- Biophysical bases of cellular electrogenesis and basic ingredients of the equivalent circuit model.
- Action potential generation in neurons: Hodgkin-Huxley model.
- Phase plane analysis;reduced models,extension to bursting and pacemaking activity
- Signal propagation along dendritic and axonal projections, and across chemical and electrical synapses. .
Blood Physiology (3L A Kabla)
- Blood physiology, composition
- Gas storage in red blood cells
- Blood rheology, Cason equation, flow in capilleries
Physiological transport systems (4L A Kabla)
- Circulatory system, heart, cardiac output, arterial pulse
- Vessel compliance, pulsatile flow profile
- flow in caplliery beds, filtration
- Respiratory system, gas exchange in the lungs, ventilation-perfusion
Coursework
Physiology of speech production.
Learning objectives:
- Learn about how vocal folds generate sound
- Understand the process of modeling a complex physiological process, from hypothesis to numerical solutions.
- Learn how to solve numerically non-linear differential equations.
- Develop Python/Matlab skills
Practical information:
- Sessions will take place in the EIETL, around week 3.
- This activity involves preliminary work (about 1h).
Full Technical Report:
Students will have the option to produce a Full Technical Report (FTR).
Booklists
Please see the Booklist for Part IIA Courses for module references.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
Last modified: 16/05/2018 13:43
Engineering Tripos Part IIA, 3G2: Mathematical Physiology, 2023-24
Module Leader
Lecturers
Prof A Kabla, Prof Mate Lengyel
Lab Leader
Timing and Structure
Lent term. 16 lectures.
Aims
The aims of the course are to:
- introduce students to the key physiological functions that are necessary for a living organism,
- develop a interdisciplinary analytical approach to quantitatively describe these functions,
- provide an overview of the modelling techniques that are commonly used to understand and predict physiological processes.
Objectives
As specific objectives, by the end of the course students should be able to:
- identify the key physiological processes at play at all relevant scales, from molecules to organisms,
- apply physical, mechanical and chemical principles in the context of physiological processes,
- critically discuss the validity of underlying assumptions and check their validity,
- use mathematical and computational tools to determine and interpret model solutions.
Content
A wide variety of topics are touched upon, from biochemistry and cellular function to neural activity and respiration. In all cases, the emphasis is on finding the simplest mathematical model that describes the observations and allows us to identify the relevant physiological parameters. The models often take the form of a simple functional relationship between two variables, or a set of coupled differential equations. The course tries to show where the equations come from and lead to: what assumptions are needed and what simple and robust conclusions can be drawn.
Physical and chemical principles (4L A Kabla)
- Molecular transport, diffusion, osmotic pressure
- Chemical reactions, law of mass action, kinetics
- Enzyme catalysis, Michaelis-Menten model, cooperativity.
- Gases, partial pressures and solubility
Electrophysiology (5L)
- Biophysical bases of cellular electrogenesis and basic ingredients of the equivalent circuit model.
- Action potential generation in neurons: Hodgkin-Huxley model.
- Phase plane analysis;reduced models,extension to bursting and pacemaking activity
- Signal propagation along dendritic and axonal projections, and across chemical and electrical synapses. .
Blood Physiology (3L A Kabla)
- Blood physiology, composition
- Gas storage in red blood cells
- Blood rheology, Cason equation, flow in capilleries
Physiological transport systems (4L A Kabla)
- Circulatory system, heart, cardiac output, arterial pulse
- Vessel compliance, pulsatile flow profile
- Blood flow in caplliery beds, filtration
- Respiratory system, gas exchange in the lungs, ventilation-perfusion
Coursework
Physiology of speech production.
Learning objectives:
At the end of this activity, students will be able to:
- describe how phonation occurs in humans and how vocal folds exploit a steady flow of air from the lungs to generate steady oscillations;
- model the movement of the vocal folds, from stating hypotheses to calculating numerical solutions;
- use standard numerical packages to solve non-linear ordinary differential equations.
- critically discuss the different dynamic regimes observed in the model and their significance.
Practical information:
- Sessions will take place in the EIETL, around week 3.
- This activity involves preliminary work (about 1h).
Full Technical Report:
Students will have the option to produce a Full Technical Report (FTR).
Booklists
Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
Last modified: 30/05/2023 15:22
Engineering Tripos Part IIA, 3G2: Mathematical Physiology, 2020-21
Module Leader
Lecturers
Dr A Kabla, Prof M Lengyel
Lab Leader
Timing and Structure
Lent term. 16 lectures.
Aims
The aims of the course are to:
- introduce students to the key physiological functions that are necessary for a living organism,
- develop a interdisciplinary analytical approach to quantitatively describe these functions,
- provide an overview of the modelling techniques that are commonly used to understand and predict physiological processes.
Objectives
As specific objectives, by the end of the course students should be able to:
- identify the key physiological processes at play at all relevant scales, from moelcules to organisms,
- apply physical, mechanical and chemical principles in the context of physiological processes,
- critically discuss the validity of underlying assumptions and check their validity,
- use mathematical and computational tools to determine and interpret model solutions.
Content
A wide variety of topics are touched upon, from biochemistry and cellular function to neural activity and respiration. In all cases, the emphasis is on finding the simplest mathematical model that describes the observations and allows us to identify the relevant physiological parameters. The models often take the form of a simple functional relationship between two variables, or a set of coupled differential equations. The course tries to show where the equations come from and lead to: what assumptions are needed and what simple and robust conclusions can be drawn.
Physical and chemical principles (4L A Kabla)
- Molecular transport, diffusion, osmotic pressure
- Chemical reactions, law of mass action, kinetics
- Enzyme catalysis, Michaelis-Menten model, cooperativity.
- Gases, partial pressures and solubility
Electrophysiology (5L M Lengyel)
- Biophysical bases of cellular electrogenesis and basic ingredients of the equivalent circuit model.
- Action potential generation in neurons: Hodgkin-Huxley model.
- Phase plane analysis;reduced models,extension to bursting and pacemaking activity
- Signal propagation along dendritic and axonal projections, and across chemical and electrical synapses. .
Blood Physiology (3L A Kabla)
- Blood physiology, composition
- Gas storage in red blood cells
- Blood rheology, Cason equation, flow in capilleries
Physiological transport systems (4L A Kabla)
- Circulatory system, heart, cardiac output, arterial pulse
- Vessel compliance, pulsatile flow profile
- Blood flow in caplliery beds, filtration
- Respiratory system, gas exchange in the lungs, ventilation-perfusion
Coursework
Physiology of speech production.
Learning objectives:
At the end of this activity, students will be able to:
- describe how phonation occurs in humans and how vocal folds exploit a steady flow of air from the lungs to generate steady oscillations;
- model the movement of the vocal folds, from stating hypotheses to calculating numerical solutions;
- use standard numerical packages to solve non-linear ordinary differential equations.
- critically discuss the different dynamic regimes observed in the model and their significance.
Practical information:
- Sessions will take place in the EIETL, around week 3.
- This activity involves preliminary work (about 1h).
Full Technical Report:
Students will have the option to produce a Full Technical Report (FTR).
Booklists
Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
Last modified: 28/08/2020 11:08
Engineering Tripos Part IIA, 3G2: Mathematical Physiology, 2025-26
Module Leader
Lecturers
Prof Mate Lengyel, Prof A Agarwal, Dr T Savin
Lab Leader
Timing and Structure
Lent term. 16 lectures.
Aims
The aims of the course are to:
- introduce students to the key physiological functions that are necessary for a living organism,
- develop a interdisciplinary analytical approach to quantitatively describe these functions,
- provide an overview of the modelling techniques that are commonly used to understand and predict physiological processes.
Objectives
As specific objectives, by the end of the course students should be able to:
- identify the key physiological processes at play at all relevant scales, from molecules to organisms,
- apply physical, mechanical and chemical principles in the context of physiological processes,
- critically discuss the validity of underlying assumptions and check their validity,
- use mathematical and computational tools to determine and interpret model solutions.
Content
A wide variety of topics are touched upon, from biochemistry and cellular function to neural activity and respiration. In all cases, the emphasis is on finding the simplest mathematical model that describes the observations and allows us to identify the relevant physiological parameters. The models often take the form of a simple functional relationship between two variables, or a set of coupled differential equations. The course tries to show where the equations come from and lead to: what assumptions are needed and what simple and robust conclusions can be drawn.
Physical and chemical principles (4L A Kabla)
- Molecular transport, diffusion, osmotic pressure
- Chemical reactions, law of mass action, kinetics
- Enzyme catalysis, Michaelis-Menten model, cooperativity.
- Gases, partial pressures and solubility
Electrophysiology (5L)
- Biophysical bases of cellular electrogenesis and basic ingredients of the equivalent circuit model.
- Action potential generation in neurons: Hodgkin-Huxley model.
- Phase plane analysis;reduced models,extension to bursting and pacemaking activity
- Signal propagation along dendritic and axonal projections, and across chemical and electrical synapses. .
Blood Physiology (3L A Kabla)
- Blood physiology, composition
- Gas storage in red blood cells
- Blood rheology, Cason equation, flow in capilleries
Physiological transport systems (4L A Kabla)
- Circulatory system, heart, cardiac output, arterial pulse
- Vessel compliance, pulsatile flow profile
- Blood flow in caplliery beds, filtration
- Respiratory system, gas exchange in the lungs, ventilation-perfusion
Coursework
Physiology of speech production.
Learning objectives:
At the end of this activity, students will be able to:
- describe how phonation occurs in humans and how vocal folds exploit a steady flow of air from the lungs to generate steady oscillations;
- model the movement of the vocal folds, from stating hypotheses to calculating numerical solutions;
- use standard numerical packages to solve non-linear ordinary differential equations.
- critically discuss the different dynamic regimes observed in the model and their significance.
Practical information:
- Sessions will take place in the EIETL, around week 3.
- This activity involves preliminary work (about 1h).
Full Technical Report:
Students will have the option to produce a Full Technical Report (FTR).
Booklists
Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
Last modified: 04/06/2025 13:22
Engineering Tripos Part IIB, 4M14: Sustainable Development, 2017-18
Module Leader
Coursework leader
Timing and Structure
Michaelmas term. 8 x 2-hour afternoon sessions. Assessment: 100% coursework
Objectives
As specific objectives, by the end of the course students should be able to:
- Understand the history behind the concept of sustainable development in international and national policies.
- Recognise common frameworks for sustainable development.
- Appreciate how engineers can influence sustainable development.
- Begin to appreciate the opportunities and challenges for incorporating sustainability objectives into infrastructure planning and design.
- Argue a sustainable development case in an effective manner.
Content
This course broadens the horizons of engineering through exploring the influence of the political, social and environmental context on developing the built environment. The module will involve discussion on the ways in which engineering is employed to serve the needs of societies, considering both current issues and future impacts. Building on the concept that actions and consequences are interconnected in a global system on which we all depend, the material will involve an examination of the ethics of engineering. Students will be encouraged to draw on their own experiences and explore their personal reactions to a number of situations and issues.
This module aims to challenge students to think about the role of engineers beyond their technical expertise. It will give students the opportunity to engage in a range of perspectives. It is hoped that this will help students to address challenges they face in their professional role, where contextual issues must be considered alongside technical considerations in planning and designing infrastructure.
Each teaching session will include a mixture of a lecture format plus group discussions. Students will be expected to participate fully in all aspects related to the subject.
Introduction to sustainable development (2 lectures)
· Sustainable Development definition
· International policy
· Conceptual frameworks
Sustainability assessment (1 lecture)
· Emergence of sustainability assessment decision-support tools
· Key tool characteristics
· Benefits and limitations
Disaster risk management (1 Lecture)
· Links between sustainable development and disaster management
· Understanding risk
· Vulnerability to natural and man-made hazards
· Resilience
Thinking globally and locally (1 Lecture)
· Global energy availability and use
· Sustainable energy choices?
· Managing supply and demand
· Traditional and renewable energy - technologies and options
· Climate legacy implications
Manufacturing/supply chains (1 Lecture)
· Materials and resource impacts
· Systems analysis
Practitioner viewpoints (2 Lectures - guests)
· UK case studies of infrastructure development through a sustainability lens
· International case studies of infrastructure development through a sustainability lens
Coursework
Students are expected to complete two pieces of coursework. The first coursework will involve a short piece of writing that will respond to a topic on the theme of engineering and sustainable development. This will account for 20% of the total marks and will serve as practice for writing a longer assignment. The second coursework will require students to write an essay (maximum 2500 words), which will account for 80% of the total marks. There will be scope for students to choose a topic that interests them.
Students are expected to do additional research and investigation beyond the course content in order to complete the coursework assignments satisfactorily.
Booklists
Please see the Booklist for Group M Courses for references for this module.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D1
Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.
S1
The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.
S3
Understanding of the requirement for engineering activities to promote sustainable development.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 05/10/2017 21:42
Engineering Tripos Part IIB, 4A4 Aircraft Stability and Control, 2023-24
Module Leader
Lecturer
Lecturer
Lab Leader
Dr W Graham
Timing and Structure
Michaelmas (8 lectures) and Lent (6 Lectures) + 2 tutorial/examples classes + coursework. Assessment: coursework 100%
Prerequisites
A working knowledge of Part IA and IB fluid mechanics and control theory will be assumed.
Aims
The aims of the course are to:
- Develop an understanding of the dynamics of an aircraft in flight, and an appreciation of how their characteristics may be improved using automatic control systems.
Objectives
As specific objectives, by the end of the course students should be able to:
- Appreciate how the equations of motion for an aircraft follow from Newton's second law, and how they may be simplified to the small-disturbance form;
- Understand how the free modes of motion follow from the equations of motion, and be aware of the approximate derivations of the modes;
- Know the factors determining the static stability of an aircraft, and understand the significance of the position of the centre of gravity;
- Have a knowledge of basic control strategies for autopilots, and their effects on aircraft stability;
- Appreciate that the dynamic characteristics of the aircraft may be improved by feedback control, and understand how this concept applies to stability augmentation systems, and command augmentation systems.
Content
The flight test part of this module has a number limit. If it is oversubscribed, selection will be made on a competitive basis, subject to priority being given to students in Engineering Areas 3 (Aerospace and Aerothermal Engineering) and 8 (Instrumentation and Control). The module can be taken without participating in the flight tests.
Please also note that the first 4A4 lecture will be a briefing session only (lectures start in week 5). Attendance at the briefing session is essential; if you are forced to miss it, contact the course leader by the end of week 1 at the latest.
Aircraft Stability (8L, Michaelmas term, Dr W.R. Graham)
- Aircraft equations of motion, small disturbance form, stability derivatives.
- Longitudinal motion: phugoid mode, short period oscillation and approximate forms.
- Lateral motion: roll subsidence, dutch roll, spiral mode and approximate forms.
- Static stability of aircraft: longitudinal stability, directional stability, lateral stability.
Automatic Control Systems (6L, Lent term, Dr M. Vera Morales)
- Root locus plots and their use in designing feedback control systems.
- Response to control inputs.
- Autopilots: pitch and roll angle control, effect on aircraft dynamic response and stability.
- Stability augmentation systems: pitch rate SAS & yaw damper as means of improving dynamic stability characteristics, relaxed static stability.
- Command augmentation systems: C-star criterion as basis for longitudinal CAS in fly-by-wire aircraft.
Coursework
Flight tests on Cranfield flying laboratory at the end of the Michaelmas term. Assessment of static and dynamic stability based on flight test data. Design study for an automatic control system for the aircraft.
| Coursework | Format |
Due date & marks |
|---|---|---|
|
Static stability Learning objective:
|
Individual report Anonymously marked |
Lent term Weds week 0 [10/60] |
|
Modes of motion Learning objective:
|
Individual report Anonymously marked |
Lent term Weds week 3 [10/60] |
|
Transfer functions Learning objective:
|
Individual report Anonymously marked |
Lent term Weds week 6 [10/60] |
|
Control systems design and final report Learning objective:
|
Individual report Anonymously marked |
Lent term Fri week 10 [30/60] |
Booklists
Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
E4
Understanding of and ability to apply a systems approach to engineering problems.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
Last modified: 08/06/2023 16:15
Engineering Tripos Part IIB, 4A4 Aircraft Stability and Control, 2019-20
Module Leader
Lecturer
Dr W R Graham
Lab Leader
Dr W R Graham
Timing and Structure
Michaelmas and Lent Terms. 14 lectures + 2 examples classes + coursework. Assessment: Coursework/Report/week 9 Lent Term/100%
Prerequisites
A working knowledge of Part IA and IB fluid mechanics and control theory will be assumed.
Aims
The aims of the course are to:
- develop an understanding of the dynamics of an aircraft in flight, and an appreciation of how their characteristics may be improved using automatic control systems.
Objectives
As specific objectives, by the end of the course students should be able to:
- Appreciate how the equations of motion for an aircraft follow from Newton's second law, and how they may be simplified to the small-disturbance form;
- Understand how the free modes of motion follow from the equations of motion, and be aware of the approximate derivations of the modes;
- Know the factors determining the static stability of an aircraft, and understand the significance of the position of the centre of gravity;
- Have a knowledge of basic control strategies for autopilots, and their effects on aircraft stability;
- Appreciate that the dynamic characteristics of the aircraft may be improved by feedback control, and understand how this concept applies to stability augmentation systems, and command augmentation systems.
Content
The flight test part of this module has a number limit of 30. If it is oversubscribed, selection will be made on a competitive basis, subject to priority being given to students in Engineering Areas 3 (Aerospace and Aerothermal Engineering) and 8 (Instrumentation and Control). The module can also be taken without participating in the flight tests.
Please also note that the first 4A4 lecture will be a briefing session only (lectures start in week 5). Attendance at the briefing session is essential; if you are forced to miss it, contact the course leader by the end of week 1 at the latest.
Aircraft Stability (8L, Michaelmas term, Dr W.R. Graham)
- Aircraft equations of motion, small disturbance form, stability derivatives.
- Longitudinal motion: phugoid mode, short period oscillation and approximate forms.
- Lateral motion: roll subsidence, dutch roll, spiral mode and approximate forms.
- Static stability of aircraft: longitudinal stability, directional stability, lateral stability.
Automatic Control Systems (6L, Lent term, Dr W.R. Graham)
- Root locus plots and their use in designing feedback control systems.
- Response to control inputs.
- Autopilots: pitch and roll angle control, effect on aircraft dynamic response and stability.
- Stability augmentation systems: pitch rate SAS & yaw damper as means of improving dynamic stability characteristics, relaxed static stability.
- Command augmentation systems: C-star criterion as basis for longitudinal CAS in fly-by-wire aircraft.
Coursework
Flight tests on Cranfield Jetstream 31 flying laboratory. Assessment of static and dynamic stability based on flight test data. Design study for an automatic control system for the aircraft. A report on the stability assessment and design study forms the basis for module assessment. The flight tests will take place at the end of the Michaelmas term.
| Coursework | Format |
Due date & marks |
|---|---|---|
|
Module report Stability assessment and design study Learning objective:
|
Individual Report anonymously marked |
Lent term Mon week 10 [60/60] |
|
|
|
Booklists
Please see the Booklist for Group A Courses for references for this module.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
E4
Understanding of and ability to apply a systems approach to engineering problems.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
Last modified: 23/05/2019 15:43
Engineering Tripos Part IIB, 4A4 Aircraft Stability and Control, 2020-21
Module Leader
Lecturer
Dr W R Graham
Lab Leader
Dr W R Graham
Timing and Structure
Michaelmas and Lent Terms. 14 lectures + 2 examples classes + coursework. Assessment: Coursework/Report/end Lent Term/100%
Prerequisites
A working knowledge of Part IA and IB fluid mechanics and control theory will be assumed.
Aims
The aims of the course are to:
- develop an understanding of the dynamics of an aircraft in flight, and an appreciation of how their characteristics may be improved using automatic control systems.
Objectives
As specific objectives, by the end of the course students should be able to:
- Appreciate how the equations of motion for an aircraft follow from Newton's second law, and how they may be simplified to the small-disturbance form;
- Understand how the free modes of motion follow from the equations of motion, and be aware of the approximate derivations of the modes;
- Know the factors determining the static stability of an aircraft, and understand the significance of the position of the centre of gravity;
- Have a knowledge of basic control strategies for autopilots, and their effects on aircraft stability;
- Appreciate that the dynamic characteristics of the aircraft may be improved by feedback control, and understand how this concept applies to stability augmentation systems, and command augmentation systems.
Content
The flight test part of this module has a number limit of 30. If it is oversubscribed, selection will be made on a competitive basis, subject to priority being given to students in Engineering Areas 3 (Aerospace and Aerothermal Engineering) and 8 (Instrumentation and Control). The module can also be taken without participating in the flight tests.
Please also note that the first 4A4 lecture will be a briefing session only (lectures start in week 5). Attendance at the briefing session is essential; if you are forced to miss it, contact the course leader by the end of week 1 at the latest.
Aircraft Stability (8L, Michaelmas term, Dr W.R. Graham)
- Aircraft equations of motion, small disturbance form, stability derivatives.
- Longitudinal motion: phugoid mode, short period oscillation and approximate forms.
- Lateral motion: roll subsidence, dutch roll, spiral mode and approximate forms.
- Static stability of aircraft: longitudinal stability, directional stability, lateral stability.
Automatic Control Systems (6L, Lent term, Dr W.R. Graham)
- Root locus plots and their use in designing feedback control systems.
- Response to control inputs.
- Autopilots: pitch and roll angle control, effect on aircraft dynamic response and stability.
- Stability augmentation systems: pitch rate SAS & yaw damper as means of improving dynamic stability characteristics, relaxed static stability.
- Command augmentation systems: C-star criterion as basis for longitudinal CAS in fly-by-wire aircraft.
Coursework
Flight tests on Cranfield Jetstream 31 flying laboratory. Assessment of static and dynamic stability based on flight test data. Design study for an automatic control system for the aircraft. A report on the stability assessment and design study forms the basis for module assessment. If the COVID-19 situation permits, the flight tests will take place at the end of the Michaelmas term. Otherwise a representative data set will be made available.
| Coursework | Format |
Due date & marks |
|---|---|---|
|
Module report Stability assessment and design study Learning objective:
|
Individual Report anonymously marked |
Lent term Mon week 10 [60/60] |
|
|
|
Booklists
Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
E4
Understanding of and ability to apply a systems approach to engineering problems.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
Last modified: 01/09/2020 10:23
Engineering Tripos Part IIB, 4A4 Aircraft Stability and Control, 2021-22
Module Leader
Lecturer
Dr W R Graham
Lab Leader
Dr W R Graham
Timing and Structure
Michaelmas and Lent Terms. 14 lectures + 2 examples classes + coursework. Assessment: Coursework/Report/end Lent Term/100%
Prerequisites
A working knowledge of Part IA and IB fluid mechanics and control theory will be assumed.
Aims
The aims of the course are to:
- develop an understanding of the dynamics of an aircraft in flight, and an appreciation of how their characteristics may be improved using automatic control systems.
Objectives
As specific objectives, by the end of the course students should be able to:
- Appreciate how the equations of motion for an aircraft follow from Newton's second law, and how they may be simplified to the small-disturbance form;
- Understand how the free modes of motion follow from the equations of motion, and be aware of the approximate derivations of the modes;
- Know the factors determining the static stability of an aircraft, and understand the significance of the position of the centre of gravity;
- Have a knowledge of basic control strategies for autopilots, and their effects on aircraft stability;
- Appreciate that the dynamic characteristics of the aircraft may be improved by feedback control, and understand how this concept applies to stability augmentation systems, and command augmentation systems.
Content
The flight test part of this module has a number limit of 30. If it is oversubscribed, selection will be made on a competitive basis, subject to priority being given to students in Engineering Areas 3 (Aerospace and Aerothermal Engineering) and 8 (Instrumentation and Control). The module can also be taken without participating in the flight tests.
Please also note that the first 4A4 lecture will be a briefing session only (lectures start in week 5). Attendance at the briefing session is essential; if you are forced to miss it, contact the course leader by the end of week 1 at the latest.
Aircraft Stability (8L, Michaelmas term, Dr W.R. Graham)
- Aircraft equations of motion, small disturbance form, stability derivatives.
- Longitudinal motion: phugoid mode, short period oscillation and approximate forms.
- Lateral motion: roll subsidence, dutch roll, spiral mode and approximate forms.
- Static stability of aircraft: longitudinal stability, directional stability, lateral stability.
Automatic Control Systems (6L, Lent term, Dr W.R. Graham)
- Root locus plots and their use in designing feedback control systems.
- Response to control inputs.
- Autopilots: pitch and roll angle control, effect on aircraft dynamic response and stability.
- Stability augmentation systems: pitch rate SAS & yaw damper as means of improving dynamic stability characteristics, relaxed static stability.
- Command augmentation systems: C-star criterion as basis for longitudinal CAS in fly-by-wire aircraft.
Coursework
Flight tests on Cranfield Jetstream 31 flying laboratory. Assessment of static and dynamic stability based on flight test data. Design study for an automatic control system for the aircraft. A report on the stability assessment and design study forms the basis for module assessment. If the COVID-19 situation permits, the flight tests will take place at the end of the Michaelmas term. Otherwise a representative data set will be made available.
| Coursework | Format |
Due date & marks |
|---|---|---|
|
Module report Stability assessment and design study Learning objective:
|
Individual Report anonymously marked |
Lent term Mon week 10 [60/60] |
|
|
|
Booklists
Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
E4
Understanding of and ability to apply a systems approach to engineering problems.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
Last modified: 20/05/2021 07:41
Engineering Tripos Part IIB, 4A4 Aircraft Stability and Control, 2024-25
Module Leader
Lecturer
Lecturer
Lab Leader
Dr D Lefas
Timing and Structure
Michaelmas (8 lectures) and Lent (6 Lectures) + 2 tutorial/examples classes + coursework. Assessment: coursework 100%
Prerequisites
A working knowledge of Part IA and IB fluid mechanics and control theory will be assumed.
Aims
The aims of the course are to:
- Develop an understanding of the dynamics of an aircraft in flight, and an appreciation of how their characteristics may be improved using automatic control systems.
Objectives
As specific objectives, by the end of the course students should be able to:
- Appreciate how the equations of motion for an aircraft follow from Newton's second law, and how they may be simplified to the small-disturbance form;
- Understand how the free modes of motion follow from the equations of motion, and be aware of the approximate derivations of the modes;
- Know the factors determining the static stability of an aircraft, and understand the significance of the position of the centre of gravity;
- Have a knowledge of basic control strategies for autopilots, and their effects on aircraft stability;
- Appreciate that the dynamic characteristics of the aircraft may be improved by feedback control, and understand how this concept applies to stability augmentation systems, and command augmentation systems.
Content
The flight test part of this module has a number limit. If it is oversubscribed, selection will be made on a competitive basis, subject to priority being given to students in Engineering Areas 3 (Aerospace and Aerothermal Engineering) and 8 (Instrumentation and Control). The module can be taken without participating in the flight tests.
Please also note that the first 4A4 lecture will be a briefing session only (lectures start in week 5). Attendance at the briefing session is essential; if you are forced to miss it, contact the course leader by the end of week 1 at the latest.
Aircraft Stability (8L, Michaelmas term, Dr W.R. Graham)
- Aircraft equations of motion, small disturbance form, stability derivatives.
- Longitudinal motion: phugoid mode, short period oscillation and approximate forms.
- Lateral motion: roll subsidence, dutch roll, spiral mode and approximate forms.
- Static stability of aircraft: longitudinal stability, directional stability, lateral stability.
Automatic Control Systems (6L, Lent term, Dr M. Vera Morales)
- Root locus plots and their use in designing feedback control systems.
- Response to control inputs.
- Autopilots: pitch and roll angle control, effect on aircraft dynamic response and stability.
- Stability augmentation systems: pitch rate SAS & yaw damper as means of improving dynamic stability characteristics, relaxed static stability.
- Command augmentation systems: C-star criterion as basis for longitudinal CAS in fly-by-wire aircraft.
Coursework
Flight tests on Cranfield flying laboratory at the end of the Michaelmas term. Assessment of static and dynamic stability based on flight test data. Design study for an automatic control system for the aircraft.
| Coursework | Format |
Due date & marks |
|---|---|---|
|
Static stability Learning objective:
|
Individual report Anonymously marked |
Lent term Weds week 0 [10/60] |
|
Modes of motion Learning objective:
|
Individual report Anonymously marked |
Lent term Weds week 3 [10/60] |
|
Transfer functions Learning objective:
|
Individual report Anonymously marked |
Lent term Weds week 6 [10/60] |
|
Control systems design and final report Learning objective:
|
Individual report Anonymously marked |
Lent term Fri week 10 [30/60] |
Booklists
Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
E4
Understanding of and ability to apply a systems approach to engineering problems.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
Last modified: 31/05/2024 09:57

