Undergraduate Teaching 2025-26

P3

P3

Not logged in. More information may be available... Login via Raven / direct.

Engineering Tripos Part IIA, 3E2: Marketing, 2022-23

Module Leader

Dr O Merlo

Lecturer

Omar Merlo

Lab Leader

Dr O Merlo

Timing and Structure

Michaelmas Term. 8 online lectures + 3 Supervisions mixing lectures, case analysis and class discussion.

Aims

The aims of the course are to:

  • Understand fundamental marketing terms, concepts, principles, and theories.
  • Understand the role of marketing and its contribution to customer and financial value.
  • Develop critical thinking and communication skills relating to marketing.
  • Appreciate how to develop and deploy an effective marketing plan.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Display a fundamental understanding of the marketing management process in different environments, contexts and situations enabling students to use marketing approaches to facilitate goal achievement.
  • Have a solid ‘first principles’ foundation, if wishing to pursue a career in business,
  • If pursuing other career paths, have a sufficient understanding of marketing to be able to interact effectively with marketing personnel in cross-functional activities.

Content

Among business disciplines, marketing is the primary contact point between a business and its customers. Business majors and non-business majors will benefit by taking this course because nearly everybody wears a marketing hat during their career. Understanding marketing will help you whether you want to be an accountant, a movie producer, an engineer, a programmer, a doctor, an entrepreneur, or a museum curator. Understanding customer needs and how to marshal the resources of an organisation to meet those needs will enhance your chances of career success.

This course develops a general management viewpoint in planning and evaluating marketing decisions. This course will also help you understand how marketing decisions are affected by organisational and environmental influences and will also enable you to develop your ability to contribute to general management. Accordingly, the course sessions are structured around the following topics:

  • Introduction to Marketing.
  • The strategic marketing planning process
  • Segmentation, targeting and positioning
  • The marketign mix: managing product, price, promotion and distribution
  • Brand management
  • Marketing communications
  • Loyalty and customer relationship management

Marketing

This course examines the key analytical frameworks and tools that are essential to building an effective marketing strategy. We cover concepts including marketing theory and customer centrism; strategic marketing planning; segmentation, targeting and positioning; the marketing mix; brand management; marketing communications and digital marketing; loyalty and customer relationship management.

The goal is that at the end of the course, you’ll be able to apply these concepts as part of a comprehensive and sophisticated marketing strategy.  You should be able to employ these elements across a variety of industries and functions, in ways that create customer value and financial value. That’s the aim of marketing.

Readings

The course readings consist primarily of case studies and a textbook.

Case Studies

The course employs a number of case studies, which should be read prior to coming to lectures and are the basis of discussion. You must read the allocated case for each class.

Books

There is a prescribed textbook in this course:

  • Merlo (2020) Strategic Marketing, Amazon.

Assessment

The final course grade is based on an exam. Students can also write a non-compulsory paper which can count as a lab paper. 

Teaching format

In the 2021-2022 academic year the course is taught online primarily via live streamed lectures.

Further notes

Examples papers

Coursework

A paper outlining the marketing strategy for a new product or service.

Booklists

Omar Merlo (2020) Strategic Marketing, Amazon.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D2

Understand customer and user needs and the importance of considerations such as aesthetics.

D3

Identify and manage cost drivers.

D5

Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S2

Extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately to strategic and tactical issues.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

 
Last modified: 24/05/2022 12:50

Engineering Tripos Part IIA, 3E2: Marketing, 2018-19

Module Leader

Dr V Mak

Lecturer

Dr V Mak

Lab Leader

Dr V Mak

Timing and Structure

Michaelmas Term. 16 lectures. 16 Contact Hours + 3 Supervisions mixing lectures, case analysis and class discussion.

Aims

The aims of the course are to:

  • Develop an understanding of fundamental marketing terms, concepts, principles, and theories.
  • Develop an understanding of the close relationship between marketing and other functions within an organisation.
  • Develop critical thinking and communication skills relating to marketing.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Display a fundamental understanding of the marketing management process in different environments, contexts and situations enabling students to use marketing approaches to facilitate goal achievement.
  • Have a solid ‘first principles’ foundation, if wishing to pursue a career in marketing,
  • If pursuing other career paths, have a sufficient understanding of marketing to be able to interact effectively with marketing personnel in cross-functional activities.

Content

Business has only two basic functions -- marketing and innovation. Everything else is a cost.

- Peter Drucker

Among business disciplines, marketing is the primary contact point between a business and its customers. Business majors and non-business majors will benefit by taking this course because nearly everybody wears a marketing hat during their career. Understanding marketing will help you whether you want to be an accountant, a movie producer, an engineer, a programmer, a doctor, or a museum curator. Understanding customer needs and how to marshal the resources of an organization to meet those needs will enhance your chances of career success.

This course develops a general management viewpoint in planning and evaluating marketing decisions – decision areas that include target markets, product, pricing, channels, and promotion. This course will also help you understand how marketing decisions are affected by organizational and environmental influences and will also enable you to develop your ability to contribute to general management. Accordingly, the course sessions are structured around the following topics:

  • Introduction to Marketing.
  • Understanding Customer and Context.
  • Marketing Research.
  • Understanding Company and Competition.
  • Market Segmentation, Targeting and Positioning.
  • Price and Promotion.
  • Product and Place.
  • Customer Loyalty and Relationships.

Coursework

Details to be announced in lectures.

There is no Full Technical Report (FTR) associated with this module.

Marketing Case Study Essay

Learning objectives

  • Identify one or more interrelated real-life marketing problems faced by the management of a product or service (or a collection of such under the same management) chosen by the student.
  • State the problem(s), describe relevant background information, and suggest recommendations for the management in response to the problem(s).
  • Apply course materials in the process to obtain an understanding of marketing in practice.
  • Generate creative, relevant business ideas for marketing management.
  • Write in an organised, concise manner with clearly presented and well-informed arguments in a business context.

Practical information:

  • The essay is due for submission to the CUED Teaching Office by the end of the Michaelmas Term (the exact deadline to be announced in lectures).
  • The student is expected to prepare and write up the essay at their own pace; the time and effort involved should be within the range for a standard coursework report.

Booklists

Indicative texts and a list of readings for each topic are given in the 3E2 Booklist, available via the Booklist for Part IIA Courses. These include major readings as well as some extra readings. Students are NOT required to do the extra reading or purchase any of the books, but are encouraged to draw on them if they wish to explore some of the topics further.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D2

Understand customer and user needs and the importance of considerations such as aesthetics.

D3

Identify and manage cost drivers.

D5

Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S2

Extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately to strategic and tactical issues.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

 
Last modified: 22/05/2018 15:56

Engineering Tripos Part IIA, 3E2: Marketing, 2023-24

Module Leader

Dr O Merlo

Lecturer

Omar Merlo

Lab Leader

Dr O Merlo

Timing and Structure

Michaelmas Term. 8 online lectures + 3 Supervisions mixing lectures, case analysis and class discussion.

Aims

The aims of the course are to:

  • Understand fundamental marketing terms, concepts, principles, and theories.
  • Understand the role of marketing and its contribution to customer and financial value.
  • Develop critical thinking and communication skills relating to marketing.
  • Appreciate how to develop and deploy an effective marketing plan.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Display a fundamental understanding of the marketing management process in different environments, contexts and situations enabling students to use marketing approaches to facilitate goal achievement.
  • Have a solid ‘first principles’ foundation, if wishing to pursue a career in business,
  • If pursuing other career paths, have a sufficient understanding of marketing to be able to interact effectively with marketing personnel in cross-functional activities.

Content

Among business disciplines, marketing is the primary contact point between a business and its customers. Business majors and non-business majors will benefit by taking this course because nearly everybody wears a marketing hat during their career. Understanding marketing will help you whether you want to be an accountant, a movie producer, an engineer, a programmer, a doctor, an entrepreneur, or a museum curator. Understanding customer needs and how to marshal the resources of an organisation to meet those needs will enhance your chances of career success.

This course develops a general management viewpoint in planning and evaluating marketing decisions. This course will also help you understand how marketing decisions are affected by organisational and environmental influences and will also enable you to develop your ability to contribute to general management. Accordingly, the course sessions are structured around the following topics:

  • Introduction to Marketing.
  • The strategic marketing planning process
  • Segmentation, targeting and positioning
  • The marketign mix: managing product, price, promotion and distribution
  • Brand management
  • Marketing communications
  • Loyalty and customer relationship management

Marketing

This course examines the key analytical frameworks and tools that are essential to building an effective marketing strategy. We cover concepts including marketing theory and customer centrism; strategic marketing planning; segmentation, targeting and positioning; the marketing mix; brand management; marketing communications and digital marketing; loyalty and customer relationship management.

The goal is that at the end of the course, you’ll be able to apply these concepts as part of a comprehensive and sophisticated marketing strategy.  You should be able to employ these elements across a variety of industries and functions, in ways that create customer value and financial value. That’s the aim of marketing.

Readings

The course readings consist primarily of case studies and a textbook.

Case Studies

The course employs a number of case studies, which should be read prior to coming to lectures and are the basis of discussion. You must read the allocated case for each class.

Books

There is a prescribed textbook in this course:

  • Merlo (2020) Strategic Marketing, Amazon.

Assessment

The final course grade is based on an exam. Students can also write a non-compulsory paper which can count as a lab paper. 

Teaching format

Eight lectures.

Further notes

Examples papers

Coursework

A paper outlining the marketing strategy for a new product or service.

Booklists

Omar Merlo (2020) Strategic Marketing, Amazon.

Case studies: Swatch, Coke, Pets.com. Cabo San Viejo

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D2

Understand customer and user needs and the importance of considerations such as aesthetics.

D3

Identify and manage cost drivers.

D5

Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S2

Extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately to strategic and tactical issues.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

 
Last modified: 03/10/2023 12:40

Engineering Tripos Part IIA, 3D8: Geo-Environmental Engineering, 2024-25

Module Leader

Prof S P G Madabhushi

Lecturers

Prof S P G Madhabhushi and Prof A Al-Tabbaa

Lab Leader

Prof S P G Madabhushi

Timing and Structure

Lent term. 16 lectures and Lab.

Aims

The aims of the course are to:

  • The aim of the course is to introduce the transport processes of fluids, water and pollutants, in the porous media that constitute the geo-environment.
  • The module aims to address the factors that influence groundwater, heat and pollutant transport, practical and design applications and problems that might arise.
  • This course aims to introduce the students to the flow regimes that occur in porous media and ways to estimate the flow quantities using flownets.
  • Similarly heat flow through porous media is introduced drawing parallels with the groundwater flow.
  • Contaminant transport through porous media is another important aspect in geo-environmental engineering that is addressed in this module.
  • Practical ways to dispose waste into the ground, the effects the contaminants have on the host soil and necessary aspects of remediation of contaminated land will also considered.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Understand the geotechnical environment.
  • Determine flow patterns in steady state groundwater seepage.
  • Evaluate potentials, pore water pressures, and flow quantities in the ground by constructing flow nets.
  • Anisotropic soils and flow nets
  • Seepage below concrete dams
  • Seepage through embankment & earth dams
  • Excavations and seepage, Cofferdams and stability
  • Draw parallels between groundwater flow and heat flow in porous media
  • Develop necessary skills to estimate heat storage and extraction from ground
  • Introduction to contaminated soil and its remediation
  • Understand the soil properties that affect the geo-environment and vice versa
  • Develop an understanding of the interactions between soils and contaminants
  • Understand the effect of soil contamination on geotechnical properties
  • Develop an understanding of the fate and transport mechanisms of contaminants in the ground
  • Solving of Advection-Dispersion equation using error functions
  • Develop appreciation of the contaminated land/landfills environment
  • Understand disposal of waste into well-engineered systems
  • Be able to design a solution relevant to land remediation or a landfill

Content

The following topics will be covered:

Flow of Water through Porous Media, is an important aspect in the design of many civil engineering structures such as retaining walls, caissons, excavation for foundations, etc. As it will be shown in the second part of the module, the same physical principles and mathematical concepts can be used to understand flow of heat in porous media, for example, in the design of energy piles or ground source heat pumps.

Contaminant Transport through Porous Media, is important to understand the presence of contaminants in the ground and how they are transported through various mechanisms and how they affect the properties of the soil. Equally disposal of waste of waste safely into well-engineered facilities is critical to minimise the environmental impact of the waste.

Groundwater, Seepage and Heat Flow in Granular media (8L)

  • Introduction
  • Concept of porous media and bulk properties.
  • Definitions of potential head, pressure head and pore pressure.
  • Groundwater flow and seepage
  • Theory of flownets
  • Anisotropic soils and flownets
  • Darcy's law and Hydraulic conductivity
  • Laboratory and in situ measurements
  • Seepage below concrete dams
  • Seepage through embankments and earth dams
  • Stability and seepage around excavations
  • Coffer dams and their stability
  • Fourier’s law and heat flow in porous media
  • Parallels between ground water flow and heat flow
  • Ground source heat pumps
  • Storage and extraction of heat from ground

Contaminated Land and transport of contaminants through ground (8L)

  • Introduction to contaminated land and contaminants in the geo-environment
  • Introduction to waste containment structures – landfills
  • The structure of clays
  • The clay-water interactions
  • The clay-water-contaminant interactions
  • The effect of contaminants on the geotechnical properties of soils
  • Mechanisms of contaminant transport
  • Fick’s law for diffusion in porous media, dispersion and sorption, Peclet’s number
  • Solving advection-dispersion equation, Error functions
  • Land remediation and waste containment design applications
  • Relevant case studies and project examples.

Coursework

Environmental Geotechnical Engineering

Learning objectives

  • Axi-Symmetric flow of ground water into a well boring
  • Axi-Symmetric heat flow in saturated soil

Practical information:

  • Sessions will take place in [ISG-88], during week(s) [2-6].
  • This activity [doesn't involve] preliminary work but read the lab handout prior to the lab session ([1 hr]).

Full Technical Report:

Students will have the option to submit a Full Technical Report.

Booklists

Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D1

Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S3

Understanding of the requirement for engineering activities to promote sustainable development.

S4

Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 31/05/2024 07:29

Engineering Tripos Part IIA, 3D8: Building Physics & Environmental Geotechnics, 2018-19

Module Leader

Prof S P G Madabhushi

Lecturers

Prof S P G Madhabhushi and Dr R Choudhary

Lab Leader

Dr R Choudhary

Timing and Structure

Lent term. 16 lectures and Lab.

Aims

The aims of the course are to:

  • Introduce the physics behind heat, liquid, and mass (air and moisture) transfer in materials,buildings, and energy systems and their interactions with outside environment, both air and ground.
  • Provide the foundational knowledge for understanding environmental characterstics of the built environment, with a focus on aspects important for structural durability and energy efficiency.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Understand the geotechnical environment.
  • Determine flow patterns in steady state groundwater seepage.
  • Evaluate potentials, pore water pressures, and flow quantities in the ground by constructing flow nets.
  • Analyze environmental behaviour of building components, such as heat flow rates, temperature variations (seasonal and diurnal).
  • Calculate steady state energy balance for a building to determine hearing, cooling and ventilation demand from auxillary systems.
  • Understand how choice of design and components influences the indoor environment and energy consumption of building.

Content

The following topics will be covered:

Flow of Water through Porous Media, which is an important aspect in the design of many civil engineering structures such as retaining walls, caissons, excavation for foundations, etc. As it will be shown in the second part of the module, the same physical principles and mathematical concepts can be used to understand flow of heat in porous media, for example, in the design of energy piles or ground source heat pumps.

Heat, air and moisture transfer across building elements: composite roofs and walls, surface-to-air, air gaps, ventilated spaces, transparent envelopes, and heat exchange between surfaces in a room; Heat exchange with ground will be covered for slab-on-grade, sub-surface structures, and ground-source heat exchangers.

The topics cover theoretical aspects of important energy flows through most common building elements, from foundations to the building envelope. This knowledge is also pre-requiste for learning simulation and modelling techniques for energy balance and environmental control systems of buildings.

Groundwater and Seepage (8L)

  • Introduction
  • Concept of porous media and bulk properties.
  • Definitions of potential head, pressure head and pore pressure.
  • Groundwater flow and seepage
  • Theory of flownets.
  • Darcy's law and Hydraulic conductivity
  • Laboratory and in-stu measurements

Heat, Air and Moisture Transfer through Building Elements (8L)

  • Conservation of energy, Fourier's laws, concept of steady state, periodic and transient.
  • Conduction: 1D heat flow through single and multi -layered structures, response to temperature variations, contact temperature between layers, network analysis.
  • Heat exchange with ground: examples of 2D and 3D heat flow between ground and building elements - pipes, slabs, sub-surfaces.
  • Radiation: reflectance, absorption and transmission; radiant surfaces and block bodies; heat gains from solar (short wave) radiation, long wave radiation exchange between 2 isothermal surfaces in enclosures.
  • Ventilation: Driving forces (wind, stack, mechanical), air exchange rates.
  • Infliteration: air through permeable materials, gaps, ventilated cavities, heat losses due to transmission and ventilation.
  • Moisture: Water vapour in air and relative humidity, characteristics of moist air, mold and surface condensation, moisture balance of building components and ventilated spaces.
  • combined Heat and Mass Transfer: exercised from practical scenarios.

Coursework

Building Physics and Environment Geotechnics

Learning objectives

  •  
  •  
  •  

Practical information:

  • Sessions will take place in [Location], during week(s) [xxx].
  • This activity [involves/doesn't involve] preliminary work ([estimated duration]).
  •  

Full Technical Report:

Students [will/won't] have the option to submit a Full Technical Report.

Booklists

Please see the Booklist for Part IIA Courses for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D1

Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S3

Understanding of the requirement for engineering activities to promote sustainable development.

S4

Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 15/05/2018 15:11

Engineering Tripos Part IIA, 3D8: Geo-Environmental Engineering, 2021-22

Module Leader

Prof S P G Madabhushi

Lecturers

Prof S P G Madhabhushi and Prof A Al-Tabbaa

Lab Leader

Prof S P G Madabhushi

Timing and Structure

Lent term. 16 lectures and Lab.

Aims

The aims of the course are to:

  • The aim of the course is to introduce the transport processes of fluids, water and pollutants, in the porous media that constitute the geo-environment.
  • The module aims to address the factors that influence groundwater, heat and pollutant transport, practical and design applications and problems that might arise.
  • This course aims to introduce the students to the flow regimes that occur in porous media and ways to estimate the flow quantities using flownets.
  • Similarly heat flow through porous media is introduced drawing parallels with the groundwater flow.
  • Contaminant transport through porous media is another important aspect in geo-environmental engineering that is addressed in this module.
  • Practical ways to dispose waste into the ground, the effects the contaminants have on the host soil and necessary aspects of remediation of contaminated land will also considered.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Understand the geotechnical environment.
  • Determine flow patterns in steady state groundwater seepage.
  • Evaluate potentials, pore water pressures, and flow quantities in the ground by constructing flow nets.
  • Anisotropic soils and flow nets
  • Seepage below concrete dams
  • Seepage through embankment & earth dams
  • Excavations and seepage, Cofferdams and stability
  • Draw parallels between groundwater flow and heat flow in porous media
  • Develop necessary skills to estimate heat storage and extraction from ground
  • Introduction to contaminated soil and its remediation
  • Understand the soil properties that affect the geo-environment and vice versa
  • Develop an understanding of the interactions between soils and contaminants
  • Understand the effect of soil contamination on geotechnical properties
  • Develop an understanding of the fate and transport mechanisms of contaminants in the ground
  • Solving of Advection-Dispersion equation using error functions
  • Develop appreciation of the contaminated land/landfills environment
  • Understand disposal of waste into well-engineered systems
  • Be able to design a solution relevant to land remediation or a landfill

Content

The following topics will be covered:

Flow of Water through Porous Media, is an important aspect in the design of many civil engineering structures such as retaining walls, caissons, excavation for foundations, etc. As it will be shown in the second part of the module, the same physical principles and mathematical concepts can be used to understand flow of heat in porous media, for example, in the design of energy piles or ground source heat pumps.

Contaminant Transport through Porous Media, is important to understand the presence of contaminants in the ground and how they are transported through various mechanisms and how they affect the properties of the soil. Equally disposal of waste of waste safely into well-engineered facilities is critical to minimise the environmental impact of the waste.

Groundwater, Seepage and Heat Flow in Granular media (8L)

  • Introduction
  • Concept of porous media and bulk properties.
  • Definitions of potential head, pressure head and pore pressure.
  • Groundwater flow and seepage
  • Theory of flownets
  • Anisotropic soils and flownets
  • Darcy's law and Hydraulic conductivity
  • Laboratory and in situ measurements
  • Seepage below concrete dams
  • Seepage through embankments and earth dams
  • Stability and seepage around excavations
  • Coffer dams and their stability
  • Fourier’s law and heat flow in porous media
  • Parallels between ground water flow and heat flow
  • Ground source heat pumps
  • Storage and extraction of heat from ground

Contaminated Land and transport of contaminants through ground (8L)

  • Introduction to contaminated land and contaminants in the geo-environment
  • Introduction to waste containment structures – landfills
  • The structure of clays
  • The clay-water interactions
  • The clay-water-contaminant interactions
  • The effect of contaminants on the geotechnical properties of soils
  • Mechanisms of contaminant transport
  • Fick’s law for diffusion in porous media, dispersion and sorption, Peclet’s number
  • Solving advection-dispersion equation, Error functions
  • Land remediation and waste containment design applications
  • Relevant case studies and project examples.

Coursework

Environmental Geotechnical Engineering

Learning objectives

  • Axi-Symmetric flow of ground water into a well boring
  • Axi-Symmetric heat flow in saturated soil

Practical information:

  • Sessions will take place in [ISG-88], during week(s) [2-6].
  • This activity [doesn't involve] preliminary work but read the lab handout prior to the lab session ([1 hr]).

Full Technical Report:

Students will have the option to submit a Full Technical Report.

Booklists

Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D1

Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S3

Understanding of the requirement for engineering activities to promote sustainable development.

S4

Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 27/07/2021 16:23

Engineering Tripos Part IIA, 3D8: Building Physics & Environmental Geotechnics, 2017-18

Module Leader

Dr R Choudhary

Lecturers

Dr S Fitzgerald, Prof A Al-Tabbaa

Lab Leader

Dr R Choudhary

Timing and Structure

Lent term. 16 lectures and Lab.

Aims

The aims of the course are to:

  • Introduce the physics behind heat, liquid, and mass (air and moisture) transfer in materials,buildings, and energy systems and their interactions with outside environment, both air and ground.
  • Provide the foundational knowledge for understanding environmental characterstics of the built environment, with a focus on aspects important for structural durability and energy efficiency.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Understand the geotechnical environment.
  • Determine flow patterns in steady state groundwater seepage.
  • Evaluate potentials, pore water pressures, and flow quantities in the ground by constructing flow nets.
  • Analyze environmental behaviour of building components, such as heat flow rates, temperature variations (seasonal and diurnal).
  • Calculate steady state energy balance for a building to determine hearing, cooling and ventilation demand from auxillary systems.
  • Understand how choice of design and components influences the indoor environment and energy consumption of building.

Content

The following topics will be covered:

Flow of Water through Porous Media, which is an important aspect in the design of many civil engineering structures such as retaining walls, caissons, excavation for foundations, etc. As it will be shown in the second part of the module, the same physical principles and mathematical concepts can be used to understand flow of heat in porous media, for example, in the design of energy piles or ground source heat pumps.

Heat, air and moisture transfer across building elements: composite roofs and walls, surface-to-air, air gaps, ventilated spaces, transparent envelopes, and heat exchange between surfaces in a room; Heat exchange with ground will be covered for slab-on-grade, sub-surface structures, and ground-source heat exchangers.

The topics cover theoretical aspects of important energy flows through most common building elements, from foundations to the building envelope. This knowledge is also pre-requiste for learning simulation and modelling techniques for energy balance and environmental control systems of buildings.

Groundwater and Seepage (8L)

  • Introduction
  • Concept of porous media and bulk properties.
  • Definitions of potential head, pressure head and pore pressure.
  • Groundwater flow and seepage
  • Theory of flownets.
  • Darcy's law and Hydraulic conductivity
  • Laboratory and in-stu measurements

Heat, Air and Moisture Transfer through Building Elements (8L)

  • Conservation of energy, Fourier's laws, concept of steady state, periodic and transient.
  • Conduction: 1D heat flow through single and multi -layered structures, response to temperature variations, contact temperature between layers, network analysis.
  • Heat exchange with ground: examples of 2D and 3D heat flow between ground and building elements - pipes, slabs, sub-surfaces.
  • Radiation: reflectance, absorption and transmission; radiant surfaces and block bodies; heat gains from solar (short wave) radiation, long wave radiation exchange between 2 isothermal surfaces in enclosures.
  • Ventilation: Driving forces (wind, stack, mechanical), air exchange rates.
  • Infliteration: air through permeable materials, gaps, ventilated cavities, heat losses due to transmission and ventilation.
  • Moisture: Water vapour in air and relative humidity, characteristics of moist air, mold and surface condensation, moisture balance of building components and ventilated spaces.
  • combined Heat and Mass Transfer: exercised from practical scenarios.

Coursework

Building Physics and Environment Geotechnics

Learning objectives

  •  
  •  
  •  

Practical information:

  • Sessions will take place in [Location], during week(s) [xxx].
  • This activity [involves/doesn't involve] preliminary work ([estimated duration]).
  •  

Full Technical Report:

Students [will/won't] have the option to submit a Full Technical Report.

Booklists

Please see the Booklist for Part IIA Courses for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D1

Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S3

Understanding of the requirement for engineering activities to promote sustainable development.

S4

Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 03/08/2017 15:35

Engineering Tripos Part IIA, 3D8: Building Physics & Environmental Geotechnics, 2019-20

Module Leader

Prof S P G Madabhushi

Lecturers

Prof S P G Madhabhushi and Dr S Fitzgerald

Lab Leader

Prof S P G Madabhushi

Timing and Structure

Lent term. 16 lectures and Lab.

Aims

The aims of the course are to:

  • Introduce the physics behind heat, liquid, and mass (air and moisture) transfer in materials,buildings, and energy systems and their interactions with outside environment, both air and ground.
  • Provide the foundational knowledge for understanding environmental characterstics of the built environment, with a focus on aspects important for structural durability and energy efficiency.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Understand the geotechnical environment.
  • Determine flow patterns in steady state groundwater seepage.
  • Evaluate potentials, pore water pressures, and flow quantities in the ground by constructing flow nets.
  • Analyze environmental behaviour of building components, such as heat flow rates, temperature variations (seasonal and diurnal).
  • Calculate steady state energy balance for a building to determine hearing, cooling and ventilation demand from auxillary systems.
  • Understand how choice of design and components influences the indoor environment and energy consumption of building.

Content

The following topics will be covered:

Flow of Water through Porous Media, which is an important aspect in the design of many civil engineering structures such as retaining walls, caissons, excavation for foundations, etc. As it will be shown in the second part of the module, the same physical principles and mathematical concepts can be used to understand flow of heat in porous media, for example, in the design of energy piles or ground source heat pumps.

Heat, air and moisture transfer across building elements: composite roofs and walls, surface-to-air, air gaps, ventilated spaces, transparent envelopes, and heat exchange between surfaces in a room; Heat exchange with ground will be covered for slab-on-grade, sub-surface structures, and ground-source heat exchangers.

The topics cover theoretical aspects of important energy flows through most common building elements, from foundations to the building envelope. This knowledge is also pre-requiste for learning simulation and modelling techniques for energy balance and environmental control systems of buildings.

Groundwater and Seepage (8L)

  • Introduction
  • Concept of porous media and bulk properties.
  • Definitions of potential head, pressure head and pore pressure.
  • Groundwater flow and seepage
  • Theory of flownets.
  • Darcy's law and Hydraulic conductivity
  • Laboratory and in-stu measurements

Heat, Air and Moisture Transfer through Building Elements (8L)

  • Conservation of energy, Fourier's laws, concept of steady state, periodic and transient.
  • Conduction: 1D heat flow through single and multi -layered structures, response to temperature variations, contact temperature between layers, network analysis.
  • Heat exchange with ground: examples of 2D and 3D heat flow between ground and building elements - pipes, slabs, sub-surfaces.
  • Radiation: reflectance, absorption and transmission; radiant surfaces and block bodies; heat gains from solar (short wave) radiation, long wave radiation exchange between 2 isothermal surfaces in enclosures.
  • Ventilation: Driving forces (wind, stack, mechanical), air exchange rates.
  • Infliteration: air through permeable materials, gaps, ventilated cavities, heat losses due to transmission and ventilation.
  • Moisture: Water vapour in air and relative humidity, characteristics of moist air, mold and surface condensation, moisture balance of building components and ventilated spaces.
  • combined Heat and Mass Transfer: exercised from practical scenarios.

Coursework

Building Physics and Environment Geotechnics

Learning objectives

  •  
  •  
  •  

Practical information:

  • Sessions will take place in [Location], during week(s) [xxx].
  • This activity [involves/doesn't involve] preliminary work ([estimated duration]).
  •  

Full Technical Report:

Students will have the option to submit a Full Technical Report.

Booklists

Please see the Booklist for Part IIA Courses for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D1

Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S3

Understanding of the requirement for engineering activities to promote sustainable development.

S4

Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 29/10/2019 13:29

Engineering Tripos Part IIA, 3D8: Geo-Environmental Engineering, 2022-23

Module Leader

Prof S P G Madabhushi

Lecturers

Prof S P G Madhabhushi and Prof A Al-Tabbaa

Lab Leader

Prof S P G Madabhushi

Timing and Structure

Lent term. 16 lectures and Lab.

Aims

The aims of the course are to:

  • The aim of the course is to introduce the transport processes of fluids, water and pollutants, in the porous media that constitute the geo-environment.
  • The module aims to address the factors that influence groundwater, heat and pollutant transport, practical and design applications and problems that might arise.
  • This course aims to introduce the students to the flow regimes that occur in porous media and ways to estimate the flow quantities using flownets.
  • Similarly heat flow through porous media is introduced drawing parallels with the groundwater flow.
  • Contaminant transport through porous media is another important aspect in geo-environmental engineering that is addressed in this module.
  • Practical ways to dispose waste into the ground, the effects the contaminants have on the host soil and necessary aspects of remediation of contaminated land will also considered.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Understand the geotechnical environment.
  • Determine flow patterns in steady state groundwater seepage.
  • Evaluate potentials, pore water pressures, and flow quantities in the ground by constructing flow nets.
  • Anisotropic soils and flow nets
  • Seepage below concrete dams
  • Seepage through embankment & earth dams
  • Excavations and seepage, Cofferdams and stability
  • Draw parallels between groundwater flow and heat flow in porous media
  • Develop necessary skills to estimate heat storage and extraction from ground
  • Introduction to contaminated soil and its remediation
  • Understand the soil properties that affect the geo-environment and vice versa
  • Develop an understanding of the interactions between soils and contaminants
  • Understand the effect of soil contamination on geotechnical properties
  • Develop an understanding of the fate and transport mechanisms of contaminants in the ground
  • Solving of Advection-Dispersion equation using error functions
  • Develop appreciation of the contaminated land/landfills environment
  • Understand disposal of waste into well-engineered systems
  • Be able to design a solution relevant to land remediation or a landfill

Content

The following topics will be covered:

Flow of Water through Porous Media, is an important aspect in the design of many civil engineering structures such as retaining walls, caissons, excavation for foundations, etc. As it will be shown in the second part of the module, the same physical principles and mathematical concepts can be used to understand flow of heat in porous media, for example, in the design of energy piles or ground source heat pumps.

Contaminant Transport through Porous Media, is important to understand the presence of contaminants in the ground and how they are transported through various mechanisms and how they affect the properties of the soil. Equally disposal of waste of waste safely into well-engineered facilities is critical to minimise the environmental impact of the waste.

Groundwater, Seepage and Heat Flow in Granular media (8L)

  • Introduction
  • Concept of porous media and bulk properties.
  • Definitions of potential head, pressure head and pore pressure.
  • Groundwater flow and seepage
  • Theory of flownets
  • Anisotropic soils and flownets
  • Darcy's law and Hydraulic conductivity
  • Laboratory and in situ measurements
  • Seepage below concrete dams
  • Seepage through embankments and earth dams
  • Stability and seepage around excavations
  • Coffer dams and their stability
  • Fourier’s law and heat flow in porous media
  • Parallels between ground water flow and heat flow
  • Ground source heat pumps
  • Storage and extraction of heat from ground

Contaminated Land and transport of contaminants through ground (8L)

  • Introduction to contaminated land and contaminants in the geo-environment
  • Introduction to waste containment structures – landfills
  • The structure of clays
  • The clay-water interactions
  • The clay-water-contaminant interactions
  • The effect of contaminants on the geotechnical properties of soils
  • Mechanisms of contaminant transport
  • Fick’s law for diffusion in porous media, dispersion and sorption, Peclet’s number
  • Solving advection-dispersion equation, Error functions
  • Land remediation and waste containment design applications
  • Relevant case studies and project examples.

Coursework

Environmental Geotechnical Engineering

Learning objectives

  • Axi-Symmetric flow of ground water into a well boring
  • Axi-Symmetric heat flow in saturated soil

Practical information:

  • Sessions will take place in [ISG-88], during week(s) [2-6].
  • This activity [doesn't involve] preliminary work but read the lab handout prior to the lab session ([1 hr]).

Full Technical Report:

Students will have the option to submit a Full Technical Report.

Booklists

Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D1

Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S3

Understanding of the requirement for engineering activities to promote sustainable development.

S4

Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 24/05/2022 12:55

Engineering Tripos Part IIA, 3D8: Environmental Geotechnics, 2020-21

Module Leader

Prof S P G Madabhushi

Lecturers

Prof S P G Madhabhushi and Prof A Al-Tabbaa

Lab Leader

Prof S P G Madabhushi

Timing and Structure

Lent term. 16 lectures and Lab.

Aims

The aims of the course are to:

  • The aim of the course is to introduce the transport processes of fluids, water and pollutants, in the porous media that constitute the geo-environment.
  • The module aims to address the factors that influence groundwater, heat and pollutant transport, practical and design applications and problems that might arise.
  • This course aims to introduce the students to the flow regimes that occur in porous media and ways to estimate the flow quantities using flownets.
  • Similarly heat flow through porous media is introduced drawing parallels with the groundwater flow.
  • Contaminant transport through porous media is another important aspect in geo-environmental engineering that is addressed in this module.
  • Practical ways to dispose waste into the ground, the effects the contaminants have on the host soil and necessary aspects of remediation of contaminated land will also considered.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Understand the geotechnical environment.
  • Determine flow patterns in steady state groundwater seepage.
  • Evaluate potentials, pore water pressures, and flow quantities in the ground by constructing flow nets.
  • Anisotropic soils and flow nets
  • Seepage below concrete dams
  • Seepage through embankment & earth dams
  • Excavations and seepage, Cofferdams and stability
  • Draw parallels between groundwater flow and heat flow in porous media
  • Develop necessary skills to estimate heat storage and extraction from ground
  • Introduction to contaminated soil and its remediation
  • Understand the soil properties that affect the geo-environment and vice versa
  • Develop an understanding of the interactions between soils and contaminants
  • Understand the effect of soil contamination on geotechnical properties
  • Develop an understanding of the fate and transport mechanisms of contaminants in the ground
  • Solving of Advection-Dispersion equation using error functions
  • Develop appreciation of the contaminated land/landfills environment
  • Understand disposal of waste into well-engineered systems
  • Be able to design a solution relevant to land remediation or a landfill

Content

The following topics will be covered:

Flow of Water through Porous Media, is an important aspect in the design of many civil engineering structures such as retaining walls, caissons, excavation for foundations, etc. As it will be shown in the second part of the module, the same physical principles and mathematical concepts can be used to understand flow of heat in porous media, for example, in the design of energy piles or ground source heat pumps.

Contaminant Transport through Porous Media, is important to understand the presence of contaminants in the ground and how they are transported through various mechanisms and how they affect the properties of the soil. Equally disposal of waste of waste safely into well-engineered facilities is critical to minimise the environmental impact of the waste.

Groundwater, Seepage and Heat Flow in Granular media (8L)

  • Introduction
  • Concept of porous media and bulk properties.
  • Definitions of potential head, pressure head and pore pressure.
  • Groundwater flow and seepage
  • Theory of flownets
  • Anisotropic soils and flownets
  • Darcy's law and Hydraulic conductivity
  • Laboratory and in situ measurements
  • Seepage below concrete dams
  • Seepage through embankments and earth dams
  • Stability and seepage around excavations
  • Coffer dams and their stability
  • Fourier’s law and heat flow in porous media
  • Parallels between ground water flow and heat flow
  • Ground source heat pumps
  • Storage and extraction of heat from ground

Contaminated Land and transport of contaminants through ground (8L)

  • Introduction to contaminated land and contaminants in the geo-environment
  • Introduction to waste containment structures – landfills
  • The structure of clays
  • The clay-water interactions
  • The clay-water-contaminant interactions
  • The effect of contaminants on the geotechnical properties of soils
  • Mechanisms of contaminant transport
  • Fick’s law for diffusion in porous media, dispersion and sorption, Peclet’s number
  • Solving advection-dispersion equation, Error functions
  • Land remediation and waste containment design applications
  • Relevant case studies and project examples.

Coursework

Environmental Geotechnical Engineering

Learning objectives

  • Axi-Symmetric flow of ground water into a well boring
  • Axi-Symmetric heat flow in saturated soil

Practical information:

  • Sessions will take place in [ISG-88], during week(s) [2-6].
  • This activity [doesn't involve] preliminary work but read the lab handout prior to the lab session ([1 hr]).

Full Technical Report:

Students will have the option to submit a Full Technical Report.

Booklists

Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D1

Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S3

Understanding of the requirement for engineering activities to promote sustainable development.

S4

Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 13/09/2020 18:24

Pages

Subscribe to P3