Engineering Tripos Part IIA, 3E10: Operations Management for Engineers, 2020-21
Leader
Lecturer
Dr F Erhun-Oguz
Lab Leader
Dr F Erhun-Oguz
Timing and Structure
Lent term. 16 lectures and 4 examples classes.
Aims
The aims of the course are to:
- Introduce Operations Management to students coming specifically from an engineering background.
- Give a foundation course for any engineering student who aims to join large manufacturing firms or go into management consultancy.
Objectives
As specific objectives, by the end of the course students should be able to:
- Understand the role, objectives and activities of Operations Management
- Be familiar with the main Operations Management concepts and techniques, which they can apply in practice.
Content
Operations management is concerned with the processes by which organisations deliver goods and services. The course will be covering the basic concepts and techniques used in managing modern manufacturing and service operations, from the composition of a manufacturing system, to planning and scheduling at factory level, and the coordination of supplier networks
- Process Fundamentals, Types of Manufacturing and Service Operations.
- Inventory Management.
- Forecasting.
- Machine-level Scheduling and Assembly Line Balancing.
- Factory-level Scheduling and MRP Systems.
- Toyota Production System and Lean Thinking.
- Quality Management, Six Sigma and Project Management
- Supply Chain Management
Further notes
TEACHING METHODS
A mixture of:
- Interactive lecture sessions
- Group discussion of case studies
- In-class exercises
Coursework
To be announced in lectures.
There is no Full Technical Report (FTR) associated with this module.
[Coursework Title]
Learning objectives:
Practical information:
- Sessions will take place in [Location], during week(s) [xxx].
- This activity [involves/doesn't involve] preliminary work ([estimated duration]).
Full Technical Report:
There is no Full Technical Report (FTR) associated with this module.
Booklists
Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D3
Identify and manage cost drivers.
D5
Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal.
S1
The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.
S2
Extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately to strategic and tactical issues.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E4
Understanding of and ability to apply a systems approach to engineering problems.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
P7
Awareness of quality issues.
P8
Ability to apply engineering techniques taking account of a range of commercial and industrial constraints.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
Last modified: 28/08/2020 11:05
Engineering Tripos Part IIA, 3E10: Operations Management for Engineers, 2021-22
Leader
Lecturer
Dr T Masood
Lab Leader
Timing and Structure
Lent term. 16 lectures and 4 examples classes.
Aims
The aims of the course are to:
- Introduce Operations Management to students coming specifically from an engineering background.
- Give a foundation course for any engineering student who aims to join large manufacturing firms or go into management consultancy.
Objectives
As specific objectives, by the end of the course students should be able to:
- Understand the role, objectives and activities of Operations Management
- Be familiar with the main Operations Management concepts and techniques, which they can apply in practice.
Content
Operations management is concerned with the processes by which organisations deliver goods and services. The course will be covering the basic concepts and techniques used in managing modern manufacturing and service operations, from the composition of a manufacturing system, to planning and scheduling at factory level, and the coordination of supplier networks
- Process Fundamentals, Types of Manufacturing and Service Operations.
- Inventory Management.
- Forecasting.
- Machine-level Scheduling and Assembly Line Balancing.
- Factory-level Scheduling and MRP Systems.
- Toyota Production System and Lean Thinking.
- Quality Management, Six Sigma and Project Management
- Supply Chain Management
Further notes
TEACHING METHODS
A mixture of:
- Interactive lecture sessions
- Group discussion of case studies
- In-class exercises
Coursework
To be announced in lectures.
There is no Full Technical Report (FTR) associated with this module.
[Coursework Title]
Learning objectives:
Practical information:
- Sessions will take place in [Location], during week(s) [xxx].
- This activity [involves/doesn't involve] preliminary work ([estimated duration]).
Full Technical Report:
There is no Full Technical Report (FTR) associated with this module.
Booklists
Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D3
Identify and manage cost drivers.
D5
Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal.
S1
The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.
S2
Extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately to strategic and tactical issues.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E4
Understanding of and ability to apply a systems approach to engineering problems.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
P7
Awareness of quality issues.
P8
Ability to apply engineering techniques taking account of a range of commercial and industrial constraints.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
Last modified: 01/12/2021 08:16
Engineering Tripos Part IIA, 3E10: Operations Management for Engineers, 2023-24
Leader
Lecturer
Prof Feryal Erhun
Timing and Structure
Lent term. 16 lectures and 4 examples classes.
Aims
The aims of the course are to:
- Introduce Operations Management to students coming specifically from an engineering background.
- Give a foundation course for any engineering student who aims to join large manufacturing firms or go into management consultancy.
Objectives
As specific objectives, by the end of the course students should be able to:
- Understand the role, objectives and activities of Operations Management
- Be familiar with the main Operations Management concepts and techniques, which they can apply in practice.
Content
Operations management is concerned with the processes by which organisations deliver goods and services. The course will be covering the basic concepts and techniques used in managing modern manufacturing and service operations, from the composition of a manufacturing system, to planning and scheduling at factory level, and the coordination of supplier networks
- Process Fundamentals, Types of Manufacturing and Service Operations
- Capacity Management
- Inventory Management
- Forecasting
- Machine-level Scheduling and Assembly Line Balancing
- Factory-level Scheduling and MRP Systems
- Toyota Production System, Lean Thinking and Six Sigma
- Supply Chain Management
Further notes
TEACHING METHODS
A mixture of:
- Interactive lecture sessions
- In-class exercises
Coursework
To be announced in lectures.
There is no Full Technical Report (FTR) associated with this module.
Booklists
Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D3
Identify and manage cost drivers.
D5
Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal.
S1
The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.
S2
Extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately to strategic and tactical issues.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E4
Understanding of and ability to apply a systems approach to engineering problems.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
P7
Awareness of quality issues.
P8
Ability to apply engineering techniques taking account of a range of commercial and industrial constraints.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
Last modified: 30/05/2023 15:21
Engineering Tripos Part IIA, 3E10: Operations Management for Engineers, 2024-25
Leader
Lecturer
Prof J Davies
Timing and Structure
Lent term. 16 lectures and 4 examples classes.
Aims
The aims of the course are to:
- Introduce Operations Management to students coming specifically from an engineering background.
- Give a foundation course for any engineering student who aims to join large manufacturing firms or go into management consultancy.
Objectives
As specific objectives, by the end of the course students should be able to:
- Understand the role, objectives and activities of Operations Management
- Be familiar with the main Operations Management concepts and techniques, which they can apply in practice.
Content
Operations management is the business function concerned with the creation, management and improvement of processes. These processes must be efficient and effective in the delivery of products and services. This module will cover the key tools, techniques and practices required to manage a modern manufacturing and service operation. We will explore the issues faced by operations managers as well as examining how companies can differentiate themselves based on their operations strategy. This module will introduce the key tools and techniques of operations management, and provide experience of process improvement methodologies, such as Lean production and Six Sigma quality across a range of industries. The course will emphasise the importance of being able to observe and analyse an operation, and to recognise operational excellence.
Topics covered:
- Delivering operational efficiency: process design and analysis:
- Ensuring operational effectiveness: quality management
- Delivering improvements: the Six Sigma organisation
- Delivering improvements: the Lean enterprise
- Managing an improvement project
- Managing resources: facilities, materials, people and technology
- Creating value across the supply chain
- Operations strategy: ensuring organisational alignment
Further notes
TEACHING METHODS
A mixture of:
- Interactive lecture sessions
- In-class exercises
- Case studies
Coursework
To be announced in lectures.
There is no Full Technical Report (FTR) associated with this module.
Booklists
Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D3
Identify and manage cost drivers.
D5
Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal.
S1
The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.
S2
Extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately to strategic and tactical issues.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E4
Understanding of and ability to apply a systems approach to engineering problems.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
P7
Awareness of quality issues.
P8
Ability to apply engineering techniques taking account of a range of commercial and industrial constraints.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
Last modified: 13/01/2025 14:55
Engineering Tripos Part IIA, 3E10: Operations Management for Engineers, 2025-26
Leader
Lecturer
Dr Gökçen Yilmaz
Lecturer
Timing and Structure
Lent term. 16 lectures and 4 examples classes.
Aims
The aims of the course are to:
- Introduce Operations Management to students coming specifically from an engineering background.
- Give a foundation course for any engineering student who aims to take on an operations focused role at a manufacturing or service firm or go into management consultancy.
Objectives
As specific objectives, by the end of the course students should be able to:
- Understand the role, objectives and activities of Operations Management
- Be familiar with the main Operations Management concepts and techniques, which they can apply in practice.
Content
Operations management is the business function concerned with the creation, management and improvement of processes. These processes must be efficient and effective in the delivery of products and services. This module will cover the key tools, techniques and practices required to manage a modern manufacturing and service operation. We will explore the issues faced by operations managers as well as examining how companies can differentiate themselves based on their operations strategy. This module will introduce the key tools and techniques of operations management, and provide experience of process improvement methodologies, such as Lean production and Six Sigma quality across a range of industries. The course will emphasise the importance of being able to observe and analyse an operation, and to recognise operational excellence.
Topics covered:
- Delivering operational efficiency: process design and analysis:
- Ensuring operational effectiveness: quality management
- Delivering improvements: the Six Sigma organisation
- Delivering improvements: the Lean enterprise
- Managing a project: implementing improvements
- Managing resources: facilities, materials, people and technology
- Creating value across the supply chain
- Operations strategy: ensuring organisational alignment
Further notes
TEACHING METHODS
A mixture of:
- Interactive lecture sessions
- In-class exercises
- Case studies
Coursework
To be announced in lectures.
There is no Full Technical Report (FTR) associated with this module.
Booklists
Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D3
Identify and manage cost drivers.
D5
Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal.
S1
The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.
S2
Extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately to strategic and tactical issues.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E4
Understanding of and ability to apply a systems approach to engineering problems.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
P7
Awareness of quality issues.
P8
Ability to apply engineering techniques taking account of a range of commercial and industrial constraints.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
Last modified: 03/12/2025 10:02
Engineering Tripos Part IIA, 3E10: Operations Management for Engineers, 2019-20
Leader
Lecturer
Dr F Erhun-Oguz
Lab Leader
Dr F Erhun-Oguz
Timing and Structure
Lent term. 16 lectures and 4 examples classes.
Aims
The aims of the course are to:
- Introduce Operations Management to students coming specifically from an engineering background.
- Give a foundation course for any engineering student who aims to join large manufacturing firms or go into management consultancy.
Objectives
As specific objectives, by the end of the course students should be able to:
- Understand the role, objectives and activities of Operations Management
- Be familiar with the main Operations Management concepts and techniques, which they can apply in practice.
Content
Operations management is concerned with the processes by which organisations deliver goods and services. The course will be covering the basic concepts and techniques used in managing modern manufacturing and service operations, from the composition of a manufacturing system, to planning and scheduling at factory level, and the coordination of supplier networks
- Process Fundamentals, Types of Manufacturing and Service Operations.
- Inventory Management.
- Forecasting.
- Machine-level Scheduling and Assembly Line Balancing.
- Factory-level Scheduling and MRP Systems.
- Toyota Production System and Lean Thinking.
- Quality Management, Six Sigma and Project Management
- Supply Chain Management
Further notes
TEACHING METHODS
A mixture of:
- Interactive lecture sessions
- Group discussion of case studies
- In-class exercises
Coursework
To be announced in lectures.
There is no Full Technical Report (FTR) associated with this module.
[Coursework Title]
Learning objectives:
Practical information:
- Sessions will take place in [Location], during week(s) [xxx].
- This activity [involves/doesn't involve] preliminary work ([estimated duration]).
Full Technical Report:
There is no Full Technical Report (FTR) associated with this module.
Booklists
Please see the Booklist for Part IIA Courses for references for this module.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D3
Identify and manage cost drivers.
D5
Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal.
S1
The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.
S2
Extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately to strategic and tactical issues.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E4
Understanding of and ability to apply a systems approach to engineering problems.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
P7
Awareness of quality issues.
P8
Ability to apply engineering techniques taking account of a range of commercial and industrial constraints.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
Last modified: 15/05/2019 09:30
Engineering Tripos Part IIA, 3E10: Operations Management for Engineers, 2017-18
Leader
Lecturer
Lab Leader
Dr R McKenzie
Timing and Structure
Lent term. 16 lectures and 4 examples classes.
Aims
The aims of the course are to:
- Introduce Operations Management to students coming specifically from an engineering background.
- Give a foundation course for any engineering student who aims to join large manufacturing firms or go into management consultancy.
Objectives
As specific objectives, by the end of the course students should be able to:
- Understand the role, objectives and activities of Operations Management
- Be familiar with the main Operations Management concepts and techniques, which they can apply in practice.
Content
Operations management is concerned with the processes by which organisations deliver goods and services. The course will be covering the basic concepts and techniques used in managing modern manufacturing and service operations, from the composition of a manufacturing system, to planning and scheduling at factory level, and the coordination of supplier networks
- Process Fundamentals, Types of Manufacturing and Service Operations.
- Inventory Management.
- Forecasting.
- Machine-level Scheduling and Assembly Line Balancing.
- Factory-level Scheduling and MRP Systems.
- Toyota Production System and Lean Thinking.
- Quality Management, Six Sigma and Project Management
- Supply Chain Management
Further notes
TEACHING METHODS
A mixture of:
- Interactive lecture sessions
- Group discussion of case studies
- In-class exercises
Coursework
To be announced in lectures.
There is no Full Technical Report (FTR) associated with this module.
[Coursework Title]
Learning objectives:
Practical information:
- Sessions will take place in [Location], during week(s) [xxx].
- This activity [involves/doesn't involve] preliminary work ([estimated duration]).
Full Technical Report:
Students [will/won't] have the option to submit a Full Technical Report.
Booklists
Please see the Booklist for Part IIA Courses for references for this module.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D3
Identify and manage cost drivers.
D5
Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal.
S1
The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.
S2
Extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately to strategic and tactical issues.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E4
Understanding of and ability to apply a systems approach to engineering problems.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
P7
Awareness of quality issues.
P8
Ability to apply engineering techniques taking account of a range of commercial and industrial constraints.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
Last modified: 03/08/2017 15:38
Engineering Tripos Part IIA, 3E10: Operations Management for Engineers, 2022-23
Leader
Lecturer
Prof Feryal Erhun
Timing and Structure
Lent term. 16 lectures and 4 examples classes.
Aims
The aims of the course are to:
- Introduce Operations Management to students coming specifically from an engineering background.
- Give a foundation course for any engineering student who aims to join large manufacturing firms or go into management consultancy.
Objectives
As specific objectives, by the end of the course students should be able to:
- Understand the role, objectives and activities of Operations Management
- Be familiar with the main Operations Management concepts and techniques, which they can apply in practice.
Content
Operations management is concerned with the processes by which organisations deliver goods and services. The course will be covering the basic concepts and techniques used in managing modern manufacturing and service operations, from the composition of a manufacturing system, to planning and scheduling at factory level, and the coordination of supplier networks
- Process Fundamentals, Types of Manufacturing and Service Operations
- Capacity Management
- Inventory Management
- Forecasting
- Machine-level Scheduling and Assembly Line Balancing
- Factory-level Scheduling and MRP Systems
- Toyota Production System, Lean Thinking and Six Sigma
- Supply Chain Management
Further notes
TEACHING METHODS
A mixture of:
- Interactive lecture sessions
- In-class exercises
Coursework
To be announced in lectures.
There is no Full Technical Report (FTR) associated with this module.
Booklists
Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D3
Identify and manage cost drivers.
D5
Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal.
S1
The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.
S2
Extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately to strategic and tactical issues.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E4
Understanding of and ability to apply a systems approach to engineering problems.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
P7
Awareness of quality issues.
P8
Ability to apply engineering techniques taking account of a range of commercial and industrial constraints.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
Last modified: 09/03/2023 10:13
Engineering Tripos Part IIA, 3E10: Operations Management for Engineers, 2018-19
Leader
Lecturer
Lab Leader
Dr R McKenzie
Timing and Structure
Lent term. 16 lectures and 4 examples classes.
Aims
The aims of the course are to:
- Introduce Operations Management to students coming specifically from an engineering background.
- Give a foundation course for any engineering student who aims to join large manufacturing firms or go into management consultancy.
Objectives
As specific objectives, by the end of the course students should be able to:
- Understand the role, objectives and activities of Operations Management
- Be familiar with the main Operations Management concepts and techniques, which they can apply in practice.
Content
Operations management is concerned with the processes by which organisations deliver goods and services. The course will be covering the basic concepts and techniques used in managing modern manufacturing and service operations, from the composition of a manufacturing system, to planning and scheduling at factory level, and the coordination of supplier networks
- Process Fundamentals, Types of Manufacturing and Service Operations.
- Inventory Management.
- Forecasting.
- Machine-level Scheduling and Assembly Line Balancing.
- Factory-level Scheduling and MRP Systems.
- Toyota Production System and Lean Thinking.
- Quality Management, Six Sigma and Project Management
- Supply Chain Management
Further notes
TEACHING METHODS
A mixture of:
- Interactive lecture sessions
- Group discussion of case studies
- In-class exercises
Coursework
To be announced in lectures.
There is no Full Technical Report (FTR) associated with this module.
[Coursework Title]
Learning objectives:
Practical information:
- Sessions will take place in [Location], during week(s) [xxx].
- This activity [involves/doesn't involve] preliminary work ([estimated duration]).
Full Technical Report:
There is no Full Technical Report (FTR) associated with this module.
Booklists
Please see the Booklist for Part IIA Courses for references for this module.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D3
Identify and manage cost drivers.
D5
Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal.
S1
The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.
S2
Extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately to strategic and tactical issues.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E4
Understanding of and ability to apply a systems approach to engineering problems.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
P7
Awareness of quality issues.
P8
Ability to apply engineering techniques taking account of a range of commercial and industrial constraints.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
Last modified: 20/06/2018 11:50
Engineering Tripos Part IIA, 3E3: Modelling Risk, 2023-24
Leader
Lecturer
Lab Leader
Timing and Structure
Lent term. 2 lectures/week. 16 lectures.
Prerequisites
Basic probability theory and statistics and basic knowledge of using Excel of Microsoft.
Aims
The aims of the course are to:
- Provide an understanding of a range of management science modelling methods involving randomness, such as statistics, decision analysis, behavioral factors, portfolio management, process analysis, queueing theory, forecasting, and regression.
- For each of the modelling areas, students will become familiar with the types of situations in which the method is useful.
Objectives
As specific objectives, by the end of the course students should be able to:
- Understand basic concepts of probability and the rationale behind statistical reasoning.
- Be able to calculate statistical measures like mean and variance, and interpret these in realistic situations.
- Use confidence intervals to quantify risk.
- Conduct hypothesis testing.
- Be able to understand decision trees and how to apply them in decision making.
- Identify and manage the bottleneck in a serial process, calculate the throughput of the entire system and utilisation at each step.
- Understand and use simple formulas for queues in which arrivals occur as a Poisson process.
- Understand the role of behavioral biases in decision making.
- Forecast data using short range extrapolative techniques such as exponential smoothing.
- Know how to take account of seasonality when forecasting.
- Apply regression techniques to estimate the way in which two variables are related.
- Be able to understand investment strategies for portfolios.
- Be able to incorporate risk into investment and decision making.
Content
"There are known knowns. These are things we know that we know. There are known unknowns. That is to say, there are things that we know we don't know. But there are also unknown unknowns. These are things we don't know we don't know."
- Donald Rumsfeld
Note: The content covered across all lectures and example papers will be as listed below. However, elements of the content may be re-sequenced to achieve a better flow.
Mathematical Analysis of Deterministic and Stochastic Processes (4L)
- Process Analysis: Identify and manage the bottleneck in a serial process, calculate the throughput of the entire system and utilisation at each step, evaluate the impact of improvements to different steps in a process.
- Queueing theory: Poisson arrival processes, classification of queueing systems, steady state, performance measures, Little's formula, benefits and limitations of queueing theory.
Regression Analysis and Forecasting (4L)
- Simple linear regression analysis, least squares estimates, significance of regression, multiple regression, multi-collinearity.
- Different methods for forecasting: moving average, exponential smoothing, modelling seasonality and trends.
Inventory Management (2L)
- Basic concepts in inventory management: inventory management under stochastic demand.
Portfolio Management (2L)
- Basic portfolio concepts
- Risk and expected return on a portfolio, and the efficient frontier.
Decision Analysis (4L)
- Events and decisions, decision trees, expected monetary value, sensitivity analysis, expected value of perfect information, expected value of sample information.
- Behavioural Factors in Decision Making
Examples papers
In this course, we will have examples classes for all students at the same time, rather than supervisions for small groups.
- Class 1: Process Analysis and Queuing theory.
- Class 2: Regression, forecasting, and inventory management.
- Class 3: Portfolio and decision analysis.
Coursework
To be announced in lectures.
There is no Full Technical Report (FTR) associated with this module.
Booklists
Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P8
Ability to apply engineering techniques taking account of a range of commercial and industrial constraints.
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
Last modified: 30/10/2023 14:58

