Undergraduate Teaching 2025-26

US4

US4

Not logged in. More information may be available... Login via Raven / direct.

Engineering Tripos Part IIB, 4D14: Contaminated Land & Waste Containment, 2022-23

Module Leader

Prof A Al-Tabbaa

Lecturers

Prof A Al-Tabbaa and Prof G Madabhushi

Lab Leader

Prof A Al-Tabbaa

Timing and Structure

Michaelmas term. 14 lectures + 1 examples classes + 1 invited lecture + coursework. Assessment: 75% exam/25% coursework.

Aims

The aims of the course are to:

  • provide an in-depth look at aspects of contaminated land and waste containment including sources of contamination, characterisation of waste, assessment, containment, remediation and sustainable regeneration.

Objectives

As specific objectives, by the end of the course students should be able to:

  • develop an appreciation of current and future problems and legislations related to contaminated land and waste containment;
  • develop good understand of contaminated land remediation options and selection decisions.
  • develop an understanding of decision support tools for contaminated land management.
  • identify potentially hazardous chemicals and sources of contamination.
  • appreciate the crucial stages in dealing with and managing contaminated land.
  • assess the risk of pollution hazards from buried wastes.
  • appreciate the legal, technical and health constraints on the design of waste repositories.
  • discuss the design of appropriate containment facilities.

Content

The module starts with an overview of contaminated land and waste containment and a review of contaminants in the ground and methods of groundwater analysis. This is followed by l ectures on disposal of waste in the ground to develop an understanding of the safe design of landfill sites for disposal of waste materials. Finally the module looks at contaminated land remendiation, management and aspects of sustainable regeneration

Introduction to contaminated land and waste containment (1L, Prof A Al-Tabbaa)

  • Introduction and overview of contaminated land remediation and waste and its containment;
  • Introduction to relevant legislation

Disposal of waste in the ground (5L, Prof G Madabhushi; 1 example class)

  • Characterisation of waste materials;
  • Estimation of landfill size, cost of waste disposal, Landfill Tax
  • Design of barriers: grout curtain, slurry wall, geomembranes;
  • Constructed facilities: design of landfill and hazardous waste repositories

Contaminants and analysis in soil and water (2L, Dr R J Lynch)

  • Contamination in the environment, introduction of inorganic and organic contaminants, and their analysis;
  • Demonstration of pollutant analysis in soils and water

Contaminated land remediation and regeneration (6L, Prof A Al-Tabbaa, 1L Guest Speaker)

  • Land contamination and remediation, sources and solutions including case studies;
  • Sustainable remediation of contaminated land;
  • Decision support tools including cost-benefit analysis, life cycle assessment and multi-criteria analysis;
  • Sustainable brownfield land management and regeneration

Coursework

Cost-benefit analysis of remediation techniques at a contaminated site.

Coursework Format

Due date

& marks

Qualitative appraisal for the remediation of a contaminated site

The coursework will involve carrying a qualitative appraisal, using the Environment Agency 'Cost-benefit analysis for remediation of land contamination' document, comparing six remediation techniques on a real contaminated site. Extracts from the site investigation report will be provided and the site is to be redeveloped for industrial use.

Learning objectives:

  • Develop a good understand of contaminated land remediation selection decisions
  • Develop an appreciation of the factors influencing such decisions
  • Develop an appreciation of impact of sensitivity analyses on the decision outcome
  • Develop a good practice for writing a professional report

Individual Report

anonymously marked

by noon on Friday 9 December 2022

[15/60]

 

 

 

 

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D1

Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.

D3

Identify and manage cost drivers.

D6

Manage the design process and evaluate outcomes.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S3

Understanding of the requirement for engineering activities to promote sustainable development.

S4

Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 26/08/2022 18:19

Engineering Tripos Part IIB, 4A15: Acoustics, 2022-23

Module Leader

Dr A Agarwal

Lecturers

Dr A. Agarwal and Dr W. Graham

Timing and Structure

Lent term: 16 lectures + 2 examples classes; Assessment: 100% exam

Prerequisites

No prerequisites. The module would be of interest to students with Aero, Mechnical, Bio or Civil Engineering background.

Aims

The aims of the course are to:

  • analyse and solve a range of practical engineering problems associated with acoustics.

Objectives

As specific objectives, by the end of the course students should be able to:

  • understand what sound is and how we perceive it
  • understand how sound is generated and propagated
  • understand the acoustics of a wide range of music and noise production

Content

We will analyse and solve a range of practical engineering problems associated with acoustics. Examples include modelling of noise sources from jets, fans, musical instruments, human voice, kettles, dripping taps, whistling mice, singing flames, etc. We will also study ways to reduce noise either at the source or through acoustic damping. Upon completion of this module, the students would be well placed to pursue academic research in the area of acoustics and related fields or to work in industry (the topics covered in the course is of interest to GE, Rolls-Royce, Airbus, Dyson, Mitsubishi Heavy Industries, automotive companies, music and biomedical industries, and acoustic consultancies).

 

What is sound and how does it propagate? (5L) (Dr A Agarwal)

  • Introduction
  • The wave equation
  • Some simple 3D wave fields (plane waves, surface waves and spherical waves)
  • Sound transmission through different media

Simples sounds sources (2L) (Dr A Agarwal)

  • Pulsating sphere
  • Oscillating sphere
  • Example: loudspeaker with and without a cabinet

General solution to wave eqn (2L) (Dr. A Agarwal)

  • Green's function
  • Sound from general mass and force sources (examples, Bliz siren and singing telephone wires)
 

Jet noise (Dr A Agarwal) (1 L)

  • Scaling of jet noise. How much does jet noise increase by if we double the jet's velocity?
  • What do jets and tuning forks have in common?
  • Lighthill's acoustic analogy
  • Sound of aircraft jets and handdriers 

Duct acoustics (2 L) (Dr A Agarwal)

  • Rectangular ducts (example, sound box)
  • Low-frequency sound in ducts
  • Circular ducts
  • Acoustic liners (Helmholtz resonator, blowing over a beer bottle)
 

Musical acoustics & everyday things (3L) (Drs A Agarwal)

  • String instruments 
  • Wind instruments 
  • Brass instruments 
  • Whistling of steam kettles and Rayleigh's Bird Call
  • Acoustics of dripping taps
 
 

Vocalisation (0.5 L) (Dr A Agarwal)

  • Human speech, singing and overtone singing
  • Mice mating calls
 

Fan noise (1L) (Dr A Agarwal)

  • Rotor alone noise
  • Rotor-stator interaction noise
 

Thermoacoustics instability (0.5 L) (Dr A Agarwal)

  • Rijke tube experiment (singing flames)

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 24/05/2022 12:55

Engineering Tripos Part IIB, 4A15: Acoustics, 2025-26

Module Leader

Dr A Agarwal

Lecturers

Dr A. Agarwal and Dr W. Graham

Timing and Structure

Lent term: 16 lectures + 2 examples classes; Assessment: 100% exam

Prerequisites

No prerequisites. The module would be of interest to students with Aero, Mechnical, Bio or Civil Engineering background.

Aims

The aims of the course are to:

  • analyse and solve a range of practical engineering problems associated with acoustics.

Objectives

As specific objectives, by the end of the course students should be able to:

  • understand what sound is and how we perceive it
  • understand how sound is generated and propagated
  • understand the acoustics of a wide range of music and noise production

Content

We will analyse and solve a range of practical engineering problems associated with acoustics. Examples include modelling of noise sources from jets, fans, musical instruments, human voice, kettles, dripping taps, whistling mice, singing flames, etc. We will also study ways to reduce noise either at the source or through acoustic damping. Upon completion of this module, the students would be well placed to pursue academic research in the area of acoustics and related fields or to work in industry (the topics covered in the course is of interest to GE, Rolls-Royce, Airbus, Dyson, Mitsubishi Heavy Industries, automotive companies, music and biomedical industries, and acoustic consultancies).

 

What is sound and how does it propagate? (5L) (Dr A Agarwal)

  • Introduction
  • The wave equation
  • Some simple 3D wave fields (plane waves, surface waves and spherical waves)
  • Sound transmission through different media

Simples sounds sources (2L) (Dr A Agarwal)

  • Pulsating sphere
  • Oscillating sphere
  • Example: loudspeaker with and without a cabinet

General solution to wave eqn (2L) (Dr. A Agarwal)

  • Green's function
  • Sound from general mass and force sources (examples, Bliz siren and singing telephone wires)
 

Jet noise (Dr A Agarwal) (1 L)

  • Scaling of jet noise. How much does jet noise increase by if we double the jet's velocity?
  • What do jets and tuning forks have in common?
  • Lighthill's acoustic analogy
  • Sound of aircraft jets and handdriers 

Duct acoustics (2 L) (Dr A Agarwal)

  • Rectangular ducts (example, sound box)
  • Low-frequency sound in ducts
  • Circular ducts
  • Acoustic liners (Helmholtz resonator, blowing over a beer bottle)
 

Musical acoustics & everyday things (3L) (Drs A Agarwal)

  • String instruments 
  • Wind instruments 
  • Brass instruments 
  • Whistling of steam kettles and Rayleigh's Bird Call
  • Acoustics of dripping taps
 
 

Vocalisation (0.5 L) (Dr A Agarwal)

  • Human speech, singing and overtone singing
  • Mice mating calls
 

Fan noise (1L) (Dr A Agarwal)

  • Rotor alone noise
  • Rotor-stator interaction noise
 

Thermoacoustics instability (0.5 L) (Dr A Agarwal)

  • Rijke tube experiment (singing flames)

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 04/06/2025 13:24

Engineering Tripos Part IIB, 4A15: Acoustics, 2023-24

Module Leader

Dr A Agarwal

Lecturers

Dr A. Agarwal and Dr W. Graham

Timing and Structure

Lent term: 16 lectures + 2 examples classes; Assessment: 100% exam

Prerequisites

No prerequisites. The module would be of interest to students with Aero, Mechnical, Bio or Civil Engineering background.

Aims

The aims of the course are to:

  • analyse and solve a range of practical engineering problems associated with acoustics.

Objectives

As specific objectives, by the end of the course students should be able to:

  • understand what sound is and how we perceive it
  • understand how sound is generated and propagated
  • understand the acoustics of a wide range of music and noise production

Content

We will analyse and solve a range of practical engineering problems associated with acoustics. Examples include modelling of noise sources from jets, fans, musical instruments, human voice, kettles, dripping taps, whistling mice, singing flames, etc. We will also study ways to reduce noise either at the source or through acoustic damping. Upon completion of this module, the students would be well placed to pursue academic research in the area of acoustics and related fields or to work in industry (the topics covered in the course is of interest to GE, Rolls-Royce, Airbus, Dyson, Mitsubishi Heavy Industries, automotive companies, music and biomedical industries, and acoustic consultancies).

 

What is sound and how does it propagate? (5L) (Dr A Agarwal)

  • Introduction
  • The wave equation
  • Some simple 3D wave fields (plane waves, surface waves and spherical waves)
  • Sound transmission through different media

Simples sounds sources (2L) (Dr A Agarwal)

  • Pulsating sphere
  • Oscillating sphere
  • Example: loudspeaker with and without a cabinet

General solution to wave eqn (2L) (Dr. A Agarwal)

  • Green's function
  • Sound from general mass and force sources (examples, Bliz siren and singing telephone wires)
 

Jet noise (Dr A Agarwal) (1 L)

  • Scaling of jet noise. How much does jet noise increase by if we double the jet's velocity?
  • What do jets and tuning forks have in common?
  • Lighthill's acoustic analogy
  • Sound of aircraft jets and handdriers 

Duct acoustics (2 L) (Dr A Agarwal)

  • Rectangular ducts (example, sound box)
  • Low-frequency sound in ducts
  • Circular ducts
  • Acoustic liners (Helmholtz resonator, blowing over a beer bottle)
 

Musical acoustics & everyday things (3L) (Drs A Agarwal)

  • String instruments 
  • Wind instruments 
  • Brass instruments 
  • Whistling of steam kettles and Rayleigh's Bird Call
  • Acoustics of dripping taps
 
 

Vocalisation (0.5 L) (Dr A Agarwal)

  • Human speech, singing and overtone singing
  • Mice mating calls
 

Fan noise (1L) (Dr A Agarwal)

  • Rotor alone noise
  • Rotor-stator interaction noise
 

Thermoacoustics instability (0.5 L) (Dr A Agarwal)

  • Rijke tube experiment (singing flames)

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 30/05/2023 15:25

Engineering Tripos Part IIB, 4M14: Sustainable Development, 2017-18

Module Leader

Dr K MacAskill

Coursework leader

Kristen MacAskill

Timing and Structure

Michaelmas term. 8 x 2-hour afternoon sessions. Assessment: 100% coursework

Objectives

As specific objectives, by the end of the course students should be able to:

  • Understand the history behind the concept of sustainable development in international and national policies.
  • Recognise common frameworks for sustainable development.
  • Appreciate how engineers can influence sustainable development.
  • Begin to appreciate the opportunities and challenges for incorporating sustainability objectives into infrastructure planning and design.
  • Argue a sustainable development case in an effective manner.

Content

 

This course broadens the horizons of engineering through exploring the influence of the political, social and environmental context on developing the built environment. The module will involve discussion on the ways in which engineering is employed to serve the needs of societies, considering both current issues and future impacts. Building on the concept that actions and consequences are interconnected in a global system on which we all depend, the material will involve an examination of the ethics of engineering. Students will be encouraged to draw on their own experiences and explore their personal reactions to a number of situations and issues.

 

This module aims to challenge students to think about the role of engineers beyond their technical expertise. It will give students the opportunity to engage in a range of perspectives. It is hoped that this will help students to address challenges they face in their professional role, where contextual issues must be considered alongside technical considerations in planning and designing infrastructure.

 

Each teaching session will include a mixture of a lecture format plus group discussions. Students will be expected to participate fully in all aspects related to the subject.

 

Introduction to sustainable development (2 lectures)

·        Sustainable Development definition

·        International policy

·        Conceptual frameworks

 

Sustainability assessment (1 lecture)

·       Emergence of sustainability assessment decision-support tools
·       
Key tool characteristics
·       Benefits and limitations

Disaster risk management (1 Lecture)

·        Links between sustainable development and disaster management

·        Understanding risk

·        Vulnerability to natural and man-made hazards

·        Resilience

 

Thinking globally and locally (1 Lecture)

·        Global energy availability and use

·        Sustainable energy choices?

·        Managing supply and demand

·        Traditional and renewable energy - technologies and options

·        Climate legacy implications

 

Manufacturing/supply chains (1 Lecture)

·        Materials and resource impacts

·        Systems analysis

 

Practitioner viewpoints (2 Lectures - guests)

·        UK case studies of infrastructure development through a sustainability lens

·        International case studies of infrastructure development through a sustainability lens

 

Coursework

Students are expected to complete two pieces of coursework. The first coursework will involve a short piece of writing that will respond to a topic on the theme of engineering and sustainable development. This will account for 20% of the total marks and will serve as practice for writing a longer assignment. The second coursework will require students to write an essay (maximum 2500 words), which will account for 80% of the total marks. There will be scope for students to choose a topic that interests them.

 

Students are expected to do additional research and investigation beyond the course content in order to complete the coursework assignments satisfactorily.

Booklists

Please see the Booklist for Group M Courses for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D1

Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S3

Understanding of the requirement for engineering activities to promote sustainable development.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 05/10/2017 21:42

Engineering Tripos Part IIA, 3D3: Structural Materials & Design, 2018-19

Module Leader

Dr M Overend

Lecturers

Dr M Overend and Prof F A McRobie

Lab Leader

Dr C Morley

Timing and Structure

Michaelmas Term. 16 Lectures.

Aims

The aims of the course are to:

  • cover the basic principles of practical design of typical engineering structures, with applications across a range of commonly-used structural materials.
  • establish links between the theory of structures, taught in the Part I courses IA Structural Mechanics and IB Structures, and the properties of materials as covered in courses on Materials and Engineering Applications.
  • study what differing approaches to design are appropriate for structures in different materials.
  • develop a design methodology that provides a firm basis for the structures courses taught in Part IIA and for the more advanced courses in the fourth year.

Objectives

As specific objectives, by the end of the course students should be able to:

  • have developed a good understanding of the structural forms appropriate in the various materials.
  • be aware of the likely critical factors (requirements, properties, behaviour) for design in the different materials.
  • be able to make sensible initial layout and sizing choices for simple structures in the various materials.
  • be able to carry out design calculations for basic structural elements in the various materials.
  • be aware of what design approaches will be appropriate, and what calculations necessary, for more complex structures in the various materials.
  • appreciate the influence of risk, and variability of loading and material properties, on structural design and calculations.

Content

The implications of the general principles of structural mechanics – equilibrium, compatibility, constitutive laws, and stability – are investigated for different materials.  This leads to discussion of typical structural forms in the various materials, the reasons for adopting them, and appropriate methods of construction.   The significant types of structural behaviour, and therefore the most useful methods of analysis and calculation, are investigated for the different material types.   A basic aim is to establish means of making reasonable preliminary decisions about structural form and layout, and initial sizing of members, before detailed calculation need begin.

Design methodologies will be developed, and design of typical elements will be discussed, for the following materials:

  • high-strength, ductile materials such as steel and aluminium alloys
  • moderately-high-strength, anisotropic, brittle materials such as advanced composites and timber
  • materials of low tensile but high compressive strength, such as concrete and masonry
  • reinforced concrete where concrete is combined with a ductile tensile material
  • brittle materials, such as glass

The critical modes of failure of structures made from these materials tend to differ – for example, global and local instability play a very significant role in thin-walled structures of high-strength materials, while shear-induced delamination is a major concern only in wood and composites.   So design approaches will be correspondingly different.

Overview and General Principles (5L)

  • evolution of structural form, with case studies.   Influence of available construction techniques.   Bridge forms and materials economic in certain span ranges.
  • requirements of a successful structure (considering collapse, buckling, deflection, cracking, imposed deformation, fatigue, fire, accident, corrosion etc, as well as construction method, cost and sustainability)
  • relevant material properties (modulus, anisotropy, strength, toughness, cost, fabrication possibilities, energy content)
  • risk, variability, and limit state design (brief introduction)
  • Span-to-depth ratio and design.
  • ‘load path’ approaches to simplified design, and the ‘lower bound’ theorem as a design tool, with limitations.

Design approaches for different materials

(in most cases, highlighting the important aspects of behaviour, covering the initial design of typical elements such as beams, columns and joints, and studying forms for complete structures).

Ductile Metals (primarily steel) (3L)

Masonry (mention) and Reinforced Concrete (3L)

Timber and Advanced Composites (3L)

Glass (2L)

Coursework

[Coursework Title]

Learning objectives

  •  
  •  
  •  

Practical information:

  • Sessions will take place in [Location], during week(s) [xxx].
  • This activity [involves/doesn't involve] preliminary work ([estimated duration]).
  •  

Full Technical Report:

Students will have the option to submit a Full Technical Report.

Booklists

Please see the Booklist for Part IIA Courses for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D1

Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S3

Understanding of the requirement for engineering activities to promote sustainable development.

S4

Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P4

Understanding use of technical literature and other information sources.

P6

Understanding of appropriate codes of practice and industry standards.

P7

Awareness of quality issues.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 13/09/2018 14:40

Engineering Tripos Part IIA, 3D3: Structural Materials & Design, 2023-24

Module Leader

Dr J Orr

Lecturers

Dr J Orr, Dr J Becque

Lab Leader

Dr J Orr

Timing and Structure

Michaelmas Term. 16 Lectures.

Aims

The aims of the course are to:

  • Provide a general understanding of the relationship between the properties of common structural materials, and the principles and approaches underpinning their use in structural design
  • Provide a bridge between the fundamental general engineering understanding of structures and materials developed in Part I and the applied specialist modules of Part II
  • Provide knowledge and knowhow enabling structural designers to improve our use of energy and material in the design of the built environment while providing safe, useful structures for people to use

Objectives

As specific objectives, by the end of the course students should be able to:

  • [1] Use the lower-bound theory of plasticity to perform load-path design of structural arrangements and to appreciate the benefits and limitations of the approach
  • [2] Consider the influence of risk, and variability of loading and material properties, in structural design and calculation
  • [3] Explain the environmental impacts of structural material and design choices
  • [4] Understand and carry out early-stage structural design with various structural materials
  • [4.1] Identify the theoretical and practical considerations governing structural design in various materials and explain how these may be accommodated in design
  • [4.2] Make reasonable conceptual design decisions regarding appropriate structural form, initial layout and initial member sizing for simple structures in various materials;
  • [4.3] Perform preliminary technical design calculations for simple structures in various materials
  • [4.4] Determine what design approaches may be appropriate, and what calculations necessary, for more complex structures in various materials

Content

The implications of the general principles of structural mechanics – equilibrium, compatibility, constitutive laws, and stability – are investigated for different materials. This leads to discussion of typical structural forms in the various materials, the reasons for adopting them, and appropriate methods of construction. The significant types of structural behaviour, and therefore the most useful methods of analysis and calculation, are investigated for the different material types. Our basic aim is to establish means of making reasonable preliminary decisions about structural form, layout and initial sizing of structural members made from a range of common construction materials.

Design methodologies will be developed, and design of typical elements will be discussed, for:

  • materials of low tensile but high compressive strength, such as masonry and glass;
  • composite materials of low tensile strength combined with a ductile tensile material, such as reinforced concrete;
  • high-strength, ductile materials such as steel and aluminium alloys;
  • moderate-  to high-strength, anisotropic, brittle materials such as engineered timber.

The critical modes of failure of structures made from these materials tend to differ, as do other considerations such as environmental impacts, so design approaches will be correspondingly different.

Weeks 1-2 provide an introduction to a number of important considerations and approaches in structural design across materials, such as: loadpaths and the lowerbound theorem; limit state design and variability; resource efficiency and sustainability

Weeks 3-8 apply these considerations and approaches to design with various structural materials including: masonry; glass; reinforced concrete; steel and timber.

 

Coursework

Concrete Lab

Learning objectives

To be able to:

1.Describe the common ingredients of concrete and their properties;
2.Design a concrete mix to satisfy certain technical requirements and cast a trial cube;
3.Supervise the casting of reinforced concrete beams and various plain concrete specimens for subsequent testing;
4.Observe and record results of destructive testing and identify different failure modes in concrete;
5.Compare empirical results with theoretical predictions based on as built-data, and evaluate the effectiveness and limitations of the theory.

Practical information:

Details will be available on the course Moodle page early in the term.

Full Technical Report:

Students will have the option to submit a Full Technical Report.

Booklists

Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D1

Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S3

Understanding of the requirement for engineering activities to promote sustainable development.

S4

Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P4

Understanding use of technical literature and other information sources.

P6

Understanding of appropriate codes of practice and industry standards.

P7

Awareness of quality issues.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 30/05/2023 15:20

Engineering Tripos Part IIA, 3D3: Structural Materials & Design, 2024-25

Module Leader

Dr R Foster

Lecturers

Dr R Foster, Dr J Becque, Prof A Lawrence

Lab Leader

Dr R Foster

Timing and Structure

Michaelmas Term. 16 Lectures.

Aims

The aims of the course are to:

  • Provide a general understanding of the relationship between the properties of common structural materials, and the principles and approaches underpinning their use in structural design
  • Provide a bridge between the fundamental general engineering understanding of structures and materials developed in Part I and the applied specialist modules of Part II
  • Provide knowledge and knowhow enabling structural designers to improve our use of energy and material in the design of the built environment while providing safe, useful structures for people to use

Objectives

As specific objectives, by the end of the course students should be able to:

  • [1] Use the lower-bound theory of plasticity to perform load-path design of structural arrangements and to appreciate the benefits and limitations of the approach
  • [2] Consider the influence of risk, and variability of loading and material properties, in structural design and calculation
  • [3] Explain the environmental impacts of structural material and design choices
  • [4] Understand and carry out early-stage structural design with various structural materials
  • [4.1] Identify the theoretical and practical considerations governing structural design in various materials and explain how these may be accommodated in design
  • [4.2] Make reasonable conceptual design decisions regarding appropriate structural form, initial layout and initial member sizing for simple structures in various materials;
  • [4.3] Perform preliminary technical design calculations for simple structures in various materials
  • [4.4] Determine what design approaches may be appropriate, and what calculations necessary, for more complex structures in various materials

Content

The implications of the general principles of structural mechanics – equilibrium, compatibility, constitutive laws, and stability – are investigated for different materials. This leads to discussion of typical structural forms in the various materials, the reasons for adopting them, and appropriate methods of construction. The significant types of structural behaviour, and therefore the most useful methods of analysis and calculation, are investigated for the different material types. Our basic aim is to establish means of making reasonable preliminary decisions about structural form, layout and initial sizing of structural members made from a range of common construction materials.

Design methodologies will be developed, and design of typical elements will be discussed, for:

  • materials of low tensile but high compressive strength, such as masonry and glass;
  • composite materials of low tensile strength combined with a ductile tensile material, such as reinforced concrete;
  • high-strength, ductile materials such as steel and aluminium alloys;
  • moderate-  to high-strength, anisotropic, brittle materials such as engineered timber.

The critical modes of failure of structures made from these materials tend to differ, as do other considerations such as environmental impacts, so design approaches will be correspondingly different.

Weeks 1-2 provide an introduction to a number of important considerations and approaches in structural design across materials, such as: loadpaths and the lowerbound theorem; limit state design and variability; resource efficiency and sustainability

Weeks 3-8 apply these considerations and approaches to design with various structural materials including: masonry; glass; reinforced concrete; steel and timber.

 

Coursework

Concrete Lab

Learning objectives

To be able to:

1.Describe the common ingredients of concrete and their properties;
2.Design a concrete mix to satisfy certain technical requirements and cast a trial cube;
3.Supervise the casting of reinforced concrete beams and various plain concrete specimens for subsequent testing;
4.Observe and record results of destructive testing and identify different failure modes in concrete;
5.Compare empirical results with theoretical predictions based on as built-data, and evaluate the effectiveness and limitations of the theory.

Practical information:

Details will be available on the course Moodle page early in the term.

Full Technical Report:

Students will have the option to submit a Full Technical Report.

Booklists

Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D1

Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S3

Understanding of the requirement for engineering activities to promote sustainable development.

S4

Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P4

Understanding use of technical literature and other information sources.

P6

Understanding of appropriate codes of practice and industry standards.

P7

Awareness of quality issues.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 31/05/2024 07:29

Engineering Tripos Part IIA, 3D3: Structural Materials & Design, 2021-22

Module Leader

Dr R Foster

Lecturers

Dr R Foster, Prof A Lawrence, Dr J Becque

Lab Leader

Dr R Foster

Timing and Structure

Michaelmas Term. 16 Lectures.

Aims

The aims of the course are to:

  • Provide a general understanding of the relationship between the properties of common structural materials, and the principles and approaches underpinning their use in structural design
  • Provide a bridge between the fundamental general engineering understanding of structures and materials developed in Part I and the applied specialist modules of Part II
  • Provide knowledge and knowhow enabling structural designers to improve our use of energy and material in the design of the built environment while providing safe, useful structures for people to use

Objectives

As specific objectives, by the end of the course students should be able to:

  • [1] Use the lower-bound theory of plasticity to perform load-path design of structural arrangements and to appreciate the benefits and limitations of the approach
  • [2] Consider the influence of risk, and variability of loading and material properties, in structural design and calculation
  • [3] Explain the environmental impacts of structural material and design choices
  • [4] Understand and carry out early-stage structural design with various structural materials
  • [4.1] Identify the theoretical and practical considerations governing structural design in various materials and explain how these may be accommodated in design
  • [4.2] Make reasonable conceptual design decisions regarding appropriate structural form, initial layout and initial member sizing for simple structures in various materials;
  • [4.3] Perform preliminary technical design calculations for simple structures in various materials
  • [4.4] Determine what design approaches may be appropriate, and what calculations necessary, for more complex structures in various materials

Content

The course this year will be 'blended', meaning that a mix of in-person, online live (Teams) and online recorded (Moodle) components will be used. We plan to deliver some of our lectures in-person in the department (although these will also be recorded and subsequently uploaded to Moodle). We plan to deliver others remotely through a combination of recorded lectures and 'live' Q&As. Recorded lectures have been updated for this year and benefit from the many lessons we learned during 2020. Full details are available on the course Moodle page.

The implications of the general principles of structural mechanics – equilibrium, compatibility, constitutive laws, and stability – are investigated for different materials.  This leads to discussion of typical structural forms in the various materials, the reasons for adopting them, and appropriate methods of construction. The significant types of structural behaviour, and therefore the most useful methods of analysis and calculation, are investigated for the different material types. Our basic aim is to establish means of making reasonable preliminary decisions about structural form, layout and initial sizing of structural members made from a range of common construction materials.

Design methodologies will be developed, and design of typical elements will be discussed, for:

  • materials of low tensile but high compressive strength, such as masonry and glass;
  • composite materials of low tensile strength combined with a ductile tensile material, such as reinforced concrete;
  • high-strength, ductile materials such as steel and aluminium alloys;
  • moderate-  to high-strength, anisotropic, brittle materials such as engineered timber.

The critical modes of failure of structures made from these materials tend to differ, as do other considerations such as environmental impacts, so design approaches will be correspondingly different.

Lecture timetable

  Lecture Date Timeslot- Lecturer- Format and location
Week 1  1. Introduction and overview Thu 7th Oct 1100-1200 Dr Foster Recorded lecture (Moodle)
  2. Load paths and lower bounds Mon 11th Oct 0900-1000 Dr Foster Recorded lecture (Moodle) + 0940-0955 live Q&A (Teams)
           
Week 2 3. Limit states and variability Thu 14th Oct 1100-1200 Dr Foster Recorded lecture (Moodle)
  4. Resource efficiency | sustainability Mon 18th Oct 0900-1000 Dr Foster Recorded lecture (Moodle) + 0940-0955 live Q&A (Teams)
           
Week 3 5. Timber design 1 Thu 21st Oct 1100-1200 Prof Lawrence In-person lecture (LR2)
  6. Timber design 2 Mon 25th Oct 0900-1000 Prof Lawrence In-person lecture (LR2)
           
Week 4 7. Timber design 3 Thu 28th Oct 1100-1200 Prof Lawrence In-person lecture (LR2)
  8. Masonry design Mon 1st Nov 0900-1000 Dr Foster Recorded lecture (Moodle)
           
Week 5 9. Glass design 1 Thu 4th Nov 1100-1200 Dr Foster Recorded lecture (Moodle)
  10. Glass design 2 Mon 8th Nov 0900-1000 Dr Foster  Recorded lecture (Moodle) + 0940-0955 live Q&A (Teams)
           
Week 6 11. Concrete design 1 Thu 11th Nov 1100-1200 Dr Foster Recorded lecture (Moodle)
  12. Concrete design 2 Mon 15th Nov 0900-1000 Dr Foster Recorded lecture (Moodle) + 0940-0955 live Q&A (Teams)
           
Week 7 13. Steel design 1 Thu 18th Nov 1100-1200 Dr Becque In-person lecture (LR2)
  14. Steel design 2 Mon 22nd Nov 0900-1000 Dr Becque In-person lecture (LR2)
           
Week 8 15. Steel design 3 Thu 25th Nov 1100-1200 Dr Becque In-person lecture (LR2)
  16. Conclusions Mon 29th Nov 0900-1000 Dr Foster Recorded lecture (Moodle) + 0940-0955 live Q&A (Teams)

 

Coursework

Concrete Lab

This lab will run in 'blended' form for 2021, with the morning session remote and the afternoon session in-person. Feedback from our first experience of running the lab in this way in 2020 was overwhelmingly positive, so we have changed very little this year. We retain the capability to run the afternoon session fully remotely, but we are hopeful that this will not be needed this year.

Learning objectives

To be able to:

1.Describe the common ingredients of concrete and their properties;
2.Design a concrete mix to satisfy certain technical requirements and cast a trial cube;
3.Supervise the casting of reinforced concrete beams and various plain concrete specimens for subsequent testing;
4.Observe and record results of destructive testing and identify different failure modes in concrete;
5.Compare empirical results with theoretical predictions based on as built-data, and evaluate the effectiveness and limitations of the theory.

Practical information:

Details will be available on the course Moodle page early in the term.

Full Technical Report:

Students will have the option to submit a Full Technical Report.

Booklists

Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D1

Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S3

Understanding of the requirement for engineering activities to promote sustainable development.

S4

Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P4

Understanding use of technical literature and other information sources.

P6

Understanding of appropriate codes of practice and industry standards.

P7

Awareness of quality issues.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 01/10/2021 03:45

Engineering Tripos Part IIA, 3D3: Structural Materials & Design, 2020-21

Module Leader

Dr R Foster

Lecturers

Dr R Foster, Prof A Lawrence, Dr J Becque

Lab Leader

Dr R Foster

Timing and Structure

Michaelmas Term. 16 Lectures.

Aims

The aims of the course are to:

  • cover the basic principles of practical design of typical engineering structures, with applications across a range of commonly-used structural materials.
  • establish links between the theory of structures, taught in the Part I courses IA Structural Mechanics and IB Structures, and the properties of materials as covered in courses on Materials and Engineering Applications.
  • study what differing approaches to design are appropriate for structures in different materials.
  • develop a design methodology that provides a firm basis for the structures courses taught in Part IIA and for the more advanced courses in the fourth year.

Objectives

As specific objectives, by the end of the course students should be able to:

  • choose structural forms appropriate to different materials
  • identify factors (requirements, properties, behaviour) governing structural design in various materials
  • make reasonable initial layout and sizing choices for simple structures in various materials
  • carry out design calculations for basic structural elements in various materials
  • determine what design approaches will be appropriate, and what calculations necessary, for more complex structures in various materials.
  • consider the influence of risk, and variability of loading and material properties, in structural design and calculation
  • consider the environmental impacts of structural material and design choices

Content

The implications of the general principles of structural mechanics – equilibrium, compatibility, constitutive laws, and stability – are investigated for different materials.  This leads to discussion of typical structural forms in the various materials, the reasons for adopting them, and appropriate methods of construction. The significant types of structural behaviour, and therefore the most useful methods of analysis and calculation, are investigated for the different material types. Our basic aim is to establish means of making reasonable preliminary decisions about structural form, layout and initial sizing of structural members made from a range of common construction materials.

Design methodologies will be developed, and design of typical elements will be discussed, for:

  • materials of low tensile but high compressive strength, such as masonry and glass;
  • composite materials of low tensile strength combined with a ductile tensile material, such as reinforced concrete;
  • high-strength, ductile materials such as steel and aluminium alloys;
  • moderate-  to high-strength, anisotropic, brittle materials such as engineered timber.

The critical modes of failure of structures made from these materials tend to differ, as do other considerations such as environmental impacts, so design approaches will be correspondingly different.

Overview and principles (4 Lecture equivalent)

  • Introduction to the course and overview of structural materials and implications of material properties for structural design
  • Load paths and the application (and limitations) of the lowerbound theory in structural design
  • Limit state design and consideration of material variability in achieving appropriate levels of reliability
  • Resource efficiency and sustainability in structural design

Masonry (1 Lecture equivalent)

Concrete and reinforced concrete (2 Lecture equivalent)

Glass (2 Lecture equivalent)

Ductile Metals (3 Lecture eqivalent)

Timber (3 Lecture equivalent)

Conclusions (1 Lecture equivalent)

Coursework

Concrete Lab

Learning objectives

To be able to:

1.Describe the common ingredients of concrete and their properties;
2.Design a concrete mix to satisfy certain technical requirements and cast a trial cube;
3.Supervise the casting of reinforced concrete beams and various plain concrete specimens for subsequent testing;
4.Observe and record results of destructive testing and identify different failure modes in concrete;
5.Compare empirical results with theoretical predictions based on as built-data, and evaluate the effectiveness and limitations of the theory.

Practical information:

Details will be available on the course Moodle page early in the term.

Full Technical Report:

Students will have the option to submit a Full Technical Report.

Booklists

Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D1

Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S3

Understanding of the requirement for engineering activities to promote sustainable development.

S4

Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P4

Understanding use of technical literature and other information sources.

P6

Understanding of appropriate codes of practice and industry standards.

P7

Awareness of quality issues.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 05/10/2020 02:57

Pages

Subscribe to US4