Engineering Tripos Part IIB, 4C6: Advanced Linear Vibrations, 2021-22
Module Leader
Lecturers
Lab Leader
Timing and Structure
Michaelmas term. 13 lectures + 2 examples classes + coursework. Assessment: 75% exam/25% coursework. This course will be delivered in-person in 2021-22.
Prerequisites
3C6 assumed.
Aims
The aims of the course are to:
- teach some essential tools for the understanding, analysis and measurement of vibration in engineering structures.
Objectives
As specific objectives, by the end of the course students should be able to:
- be familiar with the theory and practice of modal analysis and its application to engineering structures.
- apply experimental modal techniques.
- understand the vibration behaviour of idealised system components, and be able to draw implications from this for complex coupled systems.
- appreciate the physical principles of vibration damping.
- analyse simple damped vibrating systems.
Content
Introduction (1L, Dr JP Tabot)
Outline of course and introduction to the laboratory experiment.
Measurement methods and modal analysis (4L, Dr JP Talbot)
- Instrumentation for vibration measurement;
- Review of modal analysis; General properties of vibration response;
- Introduction to experimental modal analysis; Modelling the bounce of a hammer;
- Applications.
Analysis of damped systems (4L, Prof RS Langley)
- Mechanisms of damping: complex modulus, boundary dissipation, lumped dissipative elements;
- Adding damping to structures, constrained and unconstrained layers;
- Viscous damping, complex modes.
System components and coupling (4L Prof RS Langley)
- The Helmholtz resonator and its uses;
- Review of beam, membrane and plate governing equations;
- The circular membrane, Bessel functions, mode shapes and frequencies;
- Coupling of subsystems, constraints and the interlacing theorem.
Further notes
Coursework
One laboratory experiment on experimental modal analysis, to be performed in pairs, essentially unsupervised. A booking sheet will offer a wide range of possible times at which the experiment may be performed. A normal laboratory write-up is to be prepared, which will be assessed for the coursework credit. Total time commitment will be comparable to a Part IIA experiment plus FTR.
| Coursework | Format |
Due date & marks |
|---|---|---|
|
Lab experiment: modal analysis Measure vibration transfer functions over a grid of points covering a simple structure, then use modal analysis techniques explained in the lectures to infer the first few mode shapes. Learning objective:
|
Individual/pair Report Anonymously marked |
Before final lecture slot, which is a feedback session on the lab Wed week 8 [15/15] |
Booklists
Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
E4
Understanding of and ability to apply a systems approach to engineering problems.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
Last modified: 23/09/2021 10:06
Engineering Tripos Part IIB, 4C6: Advanced Linear Vibrations, 2024-25
Module Leader
Lecturers
Lab Leader
Timing and Structure
Michaelmas term. 13 lectures + 2 examples classes + coursework. Assessment: 75% exam/25% coursework. This course will be delivered in-person in 2021-22.
Prerequisites
3C6 assumed.
Aims
The aims of the course are to:
- teach some essential tools for the understanding, analysis and measurement of vibration in engineering structures.
Objectives
As specific objectives, by the end of the course students should be able to:
- be familiar with the theory and practice of modal analysis and its application to engineering structures.
- apply experimental modal techniques.
- understand the vibration behaviour of idealised system components, and be able to draw implications from this for complex coupled systems.
- appreciate the physical principles of vibration damping.
- analyse simple damped vibrating systems.
Content
Introduction (1L, Dr JP Tabot)
Outline of course and introduction to the laboratory experiment.
Measurement methods and modal analysis (4L, Dr JP Talbot)
- Instrumentation for vibration measurement;
- Review of modal analysis; General properties of vibration response;
- Introduction to experimental modal analysis; Modelling the bounce of a hammer;
- Applications.
Analysis of damped systems (4L, Dr Tore Butlin)
- Mechanisms of damping: complex modulus, boundary dissipation, lumped dissipative elements;
- Adding damping to structures, constrained and unconstrained layers;
- Viscous damping, complex modes.
System components and coupling (4L Dr Tore Butlin)
- The Helmholtz resonator and its uses;
- Review of beam, membrane and plate governing equations;
- The circular membrane, Bessel functions, mode shapes and frequencies;
- Coupling of subsystems, constraints and the interlacing theorem.
Further notes
Coursework
One laboratory experiment on experimental modal analysis, to be performed in pairs, essentially unsupervised. A booking sheet will offer a wide range of possible times at which the experiment may be performed. A normal laboratory write-up is to be prepared, which will be assessed for the coursework credit. Total time commitment will be comparable to a Part IIA experiment plus FTR.
| Coursework | Format |
Due date & marks |
|---|---|---|
|
Lab experiment: modal analysis Measure vibration transfer functions over a grid of points covering a simple structure, then use modal analysis techniques explained in the lectures to infer the first few mode shapes. Learning objective:
|
Individual/pair Report Anonymously marked |
Completed reports should be submitted via Moodle as a PDF file by 4pm on Mon 2 Dec [15/15] |
Booklists
Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
E4
Understanding of and ability to apply a systems approach to engineering problems.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
Last modified: 30/10/2024 08:34
Engineering Tripos Part IIB, 4C6: Advanced Linear Vibrations, 2018-19
Module Leader
Lecturers
Lecturers
Timing and Structure
Michaelmas term. 13 lectures + 2 examples classes + coursework. Assessment: 75% exam/25% coursework
Prerequisites
3C6 assumed.
Aims
The aims of the course are to:
- teach some essential tools for the understanding, analysis and measurement of vibration in engineering structures.
Objectives
As specific objectives, by the end of the course students should be able to:
- be familiar with the theory and practice of modal analysis and its application to engineering structures.
- apply experimental modal techniques.
- understand the vibration behaviour of idealised system components, and be able to draw implications from this for complex coupled systems.
- appreciate the physical principles of vibration damping.
- analyse simple damped vibrating systems.
Content
Introduction (1L, Prof J Woodhouse)
Outline of course and introduction to the laboratory experiment.
Measurement methods and modal analysis (4L, Dr HEM Hunt)
- Instrumentation for vibration measurement;
- Review of modal analysis; General properties of vibration response;
- Introduction to experimental modal analysis; Modelling the bounce of a hammer.
Analysis of damped systems (4L, Prof J Woodhouse)
- Mechanisms of damping: complex modulus, boundary dissipation, lumped dissipative elements;
- Adding damping to structures, constrained and unconstrained layers;
- Viscous damping, complex modes.
System components and coupling (4L Prof J Woodhouse)
- The Helmholtz resonator and its uses;
- Review of beam, membrane and plate governing equations;
- The circular membrane, Bessel functions, mode shapes and frequencies;
- Coupling of subsystems, constraints and the interlacing theorem.
Coursework
One laboratory experiment on experimental modal analysis, to be performed in pairs, essentially unsupervised. A booking sheet will offer a wide range of possible times at which the experiment may be performed. A normal laboratory write-up is to be prepared, which will be assessed for the coursework credit. Total time commitment will be comparable to a Part IIA experiment plus FTR.
| Coursework | Format |
Due date & marks |
|---|---|---|
|
Lab experiment: modal analysis Measure vibration transfer functions over a grid of points covering a simple structure, then use modal analysis techniques explained in the lectures to infer the first few mode shapes. Learning objective:
|
Individual/pair Report Anonymously marked |
Before final lecture slot, which is a feedback session on the lab Wed week 8 [15/15] |
Booklists
Please see the Booklist for Group C Courses for references for this module.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
E4
Understanding of and ability to apply a systems approach to engineering problems.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
Last modified: 17/05/2018 14:00
Engineering Tripos Part IIB, 4C6: Advanced Linear Vibrations, 2019-20
Module Leader
Lecturers
Prof RS Langley and Dr JP Talbot
Lab Leader
Timing and Structure
Michaelmas term. 13 lectures + 2 examples classes + coursework. Assessment: 75% exam/25% coursework
Prerequisites
3C6 assumed.
Aims
The aims of the course are to:
- teach some essential tools for the understanding, analysis and measurement of vibration in engineering structures.
Objectives
As specific objectives, by the end of the course students should be able to:
- be familiar with the theory and practice of modal analysis and its application to engineering structures.
- apply experimental modal techniques.
- understand the vibration behaviour of idealised system components, and be able to draw implications from this for complex coupled systems.
- appreciate the physical principles of vibration damping.
- analyse simple damped vibrating systems.
Content
Introduction (1L, Dr JP Tabot)
Outline of course and introduction to the laboratory experiment.
Measurement methods and modal analysis (4L, Dr JP Talbot)
- Instrumentation for vibration measurement;
- Review of modal analysis; General properties of vibration response;
- Introduction to experimental modal analysis; Modelling the bounce of a hammer.
Analysis of damped systems (4L, Prof RS Langley)
- Mechanisms of damping: complex modulus, boundary dissipation, lumped dissipative elements;
- Adding damping to structures, constrained and unconstrained layers;
- Viscous damping, complex modes.
System components and coupling (4L Prof RS Langley)
- The Helmholtz resonator and its uses;
- Review of beam, membrane and plate governing equations;
- The circular membrane, Bessel functions, mode shapes and frequencies;
- Coupling of subsystems, constraints and the interlacing theorem.
Further notes
Coursework
One laboratory experiment on experimental modal analysis, to be performed in pairs, essentially unsupervised. A booking sheet will offer a wide range of possible times at which the experiment may be performed. A normal laboratory write-up is to be prepared, which will be assessed for the coursework credit. Total time commitment will be comparable to a Part IIA experiment plus FTR.
| Coursework | Format |
Due date & marks |
|---|---|---|
|
Lab experiment: modal analysis Measure vibration transfer functions over a grid of points covering a simple structure, then use modal analysis techniques explained in the lectures to infer the first few mode shapes. Learning objective:
|
Individual/pair Report Anonymously marked |
Before final lecture slot, which is a feedback session on the lab Wed week 8 [15/15] |
Booklists
Please see the Booklist for Group C Courses for references for this module.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
E4
Understanding of and ability to apply a systems approach to engineering problems.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
Last modified: 10/06/2019 09:23
Engineering Tripos Part IIB, 4C6: Advanced Linear Vibrations, 2025-26
Module Leader
Lecturers
Timing and Structure
Michaelmas term. 13 lectures + 2 examples classes + coursework. Assessment: 75% exam/25% coursework.
Prerequisites
3C6 assumed.
Aims
The aims of the course are to:
- teach advanced tools for the understanding, measurement, attenuation, and analysis of vibration in engineering structures.
Objectives
As specific objectives, by the end of the course students should be able to:
- be familiar with the theory and practice of modal analysis and its application to engineering structures.
- apply experimental modal techniques.
- analyse simple damped vibrating systems.
- understand the physical principles of vibration damping and methods for deliberately introducing damping.
- understand the vibration behaviour of idealised system components, and be able to draw implications from this for complex coupled systems.
- be able to analyse simple systems from a wave propagation perspective.
- understand the properties of periodic structures (metamaterials) and be able to predict their behaviour.
Content
Measurement methods and modal analysis (4L, Dr Tore Butlin)
- Instrumentation for vibration measurement;
- Review of modal analysis; General properties of vibration response;
- Introduction to experimental modal analysis; Modelling the bounce of a hammer;
- Signal processing techniques for identifying useful information from vibration tests;
- Applications.
Analysis of damped systems (4L, Dr Tore Butlin)
- Mechanisms of damping: complex modulus, boundary dissipation, lumped dissipative elements;
- Methods for adding damping to structures;
- Feedforward active noise control;
- Viscous damping, complex modes;
- The Helmholtz resonator and its uses.
System components and modelling techniques (4L Dr Tore Butlin)
- The circular membrane, Bessel functions, mode shapes and frequencies;
- Understanding vibration from a wave propagation perspective;
- Periodic structures and metamaterials;
- Numerical techniques for complex structures;
- Coupling of subsystems, constraints and the interlacing theorem.
Further notes
Coursework
One laboratory experiment on experimental modal analysis, to be performed in pairs, essentially unsupervised. A booking sheet will offer a wide range of possible times at which the experiment may be performed. A normal laboratory write-up is to be prepared, which will be assessed for the coursework credit. Total time commitment will be comparable to a Part IIA experiment plus FTR.
| Coursework | Format |
Due date & marks |
|---|---|---|
|
Lab experiment: modal analysis Measure vibration transfer functions over a grid of points covering a simple structure, then use modal analysis techniques explained in the lectures to infer the first few mode shapes. Learning objective:
|
Individual/pair Report Anonymously marked |
Completed reports should be submitted via Moodle as a PDF file by 4pm on Mon 2 Dec [15/15] |
Booklists
Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
E4
Understanding of and ability to apply a systems approach to engineering problems.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
Last modified: 06/10/2025 14:57
Engineering Tripos Part IIB, 4C5: Design Case Studies, 2023-24
Module Leader
Lecturers
Prof. J Clarkson and Prof. N Crilly
Lab Leader
Prof. N Crilly
Timing and Structure
Lent term. 16 lecture slots, including lectures, group discussion and time for coursework. Assessment: 100% coursework. Lectures and discussions will be recorded.
Aims
The aims of the course are to:
- illustrate the multi-disciplinary nature of engineering design
- explore this multi-disciplinarity through diverse case studies.
Objectives
As specific objectives, by the end of the course students should be able to:
- demonstrate the skills and knowledge listed under each coursework element.
Content
The course will be based on two case studies. Each case study will occupy eight lectures slots with approximately two in each case study being used for coursework. Notes will be distributed summarising the main points covered in each case study.
Coursework
There will be a coursework exercise linked to each of the case studies.
| Coursework | Format |
Due date & marks |
|---|---|---|
|
Consumer Product The purpose of this case study is to expose students to a research and development process for a design concept focussed on recreational use (sports, hobbies and pastimes). Learning objectives: After completing this coursework, students should be able to
|
One individual report, anonymously marked |
Approximately Week 5 (exact date TBD) [30/60] |
|
Industrial System The purpose of this case study is to expose students to the complete design process for an inhaler test machine. Learning objectives: After completing this coursework, students should be able to
|
Two individual reports. Anonymously marked |
Approximately Weeks 6 and 8 (exact date TBD) |
Booklists
Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D1
Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.
D2
Understand customer and user needs and the importance of considerations such as aesthetics.
D4
Ability to generate an innovative design for products, systems, components or processes to fulfil new needs.
D6
Manage the design process and evaluate outcomes.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
E4
Understanding of and ability to apply a systems approach to engineering problems.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
P4
Understanding use of technical literature and other information sources.
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
Last modified: 30/05/2023 15:28
Engineering Tripos Part IIB, 4C5: Design Case Studies, 2022-23
Module Leader
Lecturers
Prof. Per Ola Kristenson and Prof. N Crilly
Lab Leader
Prof. N Crilly
Timing and Structure
Lent term. 16 lecture slots, including lectures, group discussion and time for coursework. Assessment: 100% coursework. Lectures and discussions will be recorded.
Aims
The aims of the course are to:
- illustrate the multi-disciplinary nature of engineering design
- explore this multi-disciplinarity through diverse case studies.
Objectives
As specific objectives, by the end of the course students should be able to:
- demonstrate the skills and knowledge listed under each coursework element.
Content
The course will be based on two case studies. Each case study will occupy eight lectures slots with the last one or two in each case study being used for coursework. Notes will be distributed summarising the main points covered in each case study.
Coursework
There will be a coursework exercise linked to each of the case studies.
| Coursework | Format |
Due date & marks |
|---|---|---|
|
Wearable Device The purpose of this case study is to expose students to an open-ended design process that results in a systematic design of a wearable device that fulfils users’ needs and is safe to use. Learning objectives:
|
One individual report, anonymously marked |
Approximately Week 4 (exact date TBD) [30/60] |
|
Consumer Product The purpose of this case study is to expose students to a research and development process for a design concept focussed on recreational use (sports, hobbies and pastimes). Learning objectives: After completing this coursework, students should be able to
|
One individual report, anonymously marked |
Approximately Week 9 (exact date TBD) [30/60] |
Booklists
Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D1
Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.
D2
Understand customer and user needs and the importance of considerations such as aesthetics.
D4
Ability to generate an innovative design for products, systems, components or processes to fulfil new needs.
D6
Manage the design process and evaluate outcomes.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
E4
Understanding of and ability to apply a systems approach to engineering problems.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
P4
Understanding use of technical literature and other information sources.
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
Last modified: 27/09/2022 10:50
Engineering Tripos Part IIB, 4C5: Design Case Studies, 2019-20
Module Leader
Lecturers
Prof P Kristensson and Prof J Clarkson
Lab Leader
Prof P Kristensson
Timing and Structure
Lent term. 14 lectures + coursework. Assessment: 100% coursework
Aims
The aims of the course are to:
- illustrate the multi-disciplinary nature of engineering design.
- demonstrate the importance of considering user needs.
- illustrate the above through case studies of form, component and system design.
Objectives
As specific objectives, by the end of the course students should be able to:
- appreciate the importance of multi-disciplinary systems design.
- select simple components from catalogues.
- understand relations between customer requirements, commercial requirements and product forms.
- appreciate the role of aesthetics and ergonomics in engineering design.
- understand the importance of design for manufacture and assembly.
Content
The course will be based on two case studies.
Each case study will occupy eight lectures slots with the last one or two in each case study being used for coursework.
Topics to be covered within individual case studies include: multi-disciplinary systems design; component selection; risk analysis; product testing, aesthetics and ergonomics; and design for manufacture and assembly.
Notes will be handed out summarising the main points covered in each case study.
Coursework
There will be a coursework exercise linked to each of the case studies with multi-part written assignments, using computer software where appropriate.
| Coursework | Format |
Due date & marks |
|---|---|---|
|
Inhaler Test Machine The purpose of this case study is to expose students to the complete design process for an inhaler test machine. Learning objectives:
|
Two individual reports Anonymously marked |
Approximately Weeks 2 and 4 (exact date TBD) [30/60] |
|
Wearable Device The purpose of this case study is to expose students to an open-ended design process that results in a systematic design of a wearable device that fulfils users’ needs and is safe to use. Learning objectives:
|
One individual report Anonymously marked |
Approximately Week 8 (exact date TBD) [30/60] |
Booklists
Please see the Booklist for Group C Courses for references for this module.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D1
Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.
D2
Understand customer and user needs and the importance of considerations such as aesthetics.
D4
Ability to generate an innovative design for products, systems, components or processes to fulfil new needs.
D6
Manage the design process and evaluate outcomes.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
E4
Understanding of and ability to apply a systems approach to engineering problems.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
P4
Understanding use of technical literature and other information sources.
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
Last modified: 25/09/2019 18:59
Engineering Tripos Part IIB, 4C5: Design Case Studies, 2025-26
Module Leader
Lecturers
Prof. J Clarkson and Prof. N Crilly
Timing and Structure
Lent term. 16 lecture slots, including lectures, group discussion and time for coursework. Assessment: 100% coursework. Lectures and discussions will be recorded.
Aims
The aims of the course are to:
- illustrate the multi-disciplinary nature of engineering design
- explore this multi-disciplinarity through diverse case studies.
Objectives
As specific objectives, by the end of the course students should be able to:
- demonstrate the skills and knowledge listed under each coursework element.
Content
Design approaches and systems approaches are central to invention and innovation. This is true not only in engineering, but also across a broad range of sectors and roles, including management, strategy and policy. The course supports students develop design and systems skills related to identifying requirements, developing solutions and demonstrating the value of those solutions.
The focus is on stakeholder engagement, with students working to understand what key stakeholders require and how designs can be developed to satisfy those requirements. Such stakeholder-focussed activities are central to many professional roles, including consulting practices.
The course is based on two projects. Each project will occupy eight lecture slots, with approximately two slots for each project being used for coursework activities. Notes or slides summarising the main points for each project will be made available.
Coursework
There will be a coursework exercise linked to each project.
| Coursework | Format |
Due date & marks |
|---|---|---|
|
Consumer Product The purpose of this project is to expose students to a research and development process for a design concept focussed on recreational use (sports, hobbies and pastimes). Learning objectives: After completing this coursework, students should be able to
|
One individual report, anonymously marked |
Approximately Week 5 (exact date TBD) [30/60] |
|
Industrial System The purpose of this project is to expose students to the complete design process for an inhaler test machine. Learning objectives: After completing this coursework, students should be able to
|
Two individual reports. Anonymously marked |
Approximately Weeks 6 and 8 (exact date TBD) |
Booklists
Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D1
Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.
D2
Understand customer and user needs and the importance of considerations such as aesthetics.
D4
Ability to generate an innovative design for products, systems, components or processes to fulfil new needs.
D6
Manage the design process and evaluate outcomes.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
E4
Understanding of and ability to apply a systems approach to engineering problems.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
P4
Understanding use of technical literature and other information sources.
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
Last modified: 04/06/2025 13:26
Engineering Tripos Part IIB, 4C5: Design Case Studies, 2024-25
Module Leader
Lecturers
Prof. J Clarkson and Prof. N Crilly
Lab Leader
Prof. N Crilly
Timing and Structure
Lent term. 16 lecture slots, including lectures, group discussion and time for coursework. Assessment: 100% coursework. Lectures and discussions will be recorded.
Aims
The aims of the course are to:
- illustrate the multi-disciplinary nature of engineering design
- explore this multi-disciplinarity through diverse case studies.
Objectives
As specific objectives, by the end of the course students should be able to:
- demonstrate the skills and knowledge listed under each coursework element.
Content
The course will be based on two case studies. Each case study will occupy eight lectures slots with approximately two in each case study being used for coursework. Notes will be distributed summarising the main points covered in each case study.
Coursework
There will be a coursework exercise linked to each of the case studies.
| Coursework | Format |
Due date & marks |
|---|---|---|
|
Consumer Product The purpose of this case study is to expose students to a research and development process for a design concept focussed on recreational use (sports, hobbies and pastimes). Learning objectives: After completing this coursework, students should be able to
|
One individual report, anonymously marked |
Approximately Week 5 (exact date TBD) [30/60] |
|
Industrial System The purpose of this case study is to expose students to the complete design process for an inhaler test machine. Learning objectives: After completing this coursework, students should be able to
|
Two individual reports. Anonymously marked |
Approximately Weeks 6 and 8 (exact date TBD) |
Booklists
Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D1
Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.
D2
Understand customer and user needs and the importance of considerations such as aesthetics.
D4
Ability to generate an innovative design for products, systems, components or processes to fulfil new needs.
D6
Manage the design process and evaluate outcomes.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
E4
Understanding of and ability to apply a systems approach to engineering problems.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
P4
Understanding use of technical literature and other information sources.
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
Last modified: 31/05/2024 10:02

