Undergraduate Teaching 2025-26

IA2

IA2

Not logged in. More information may be available... Login via Raven / direct.

Engineering Tripos Part IIB, 4B2: Power Microelectronics, 2023-24

Module Leader

Prof F Udrea

Lecturer

Prof F Udrea

Timing and Structure

Michaelmas term. 14 lectures (includes one example class). Assessment: 100% exam. Lectures will be in person. Check timetable in Moodle.

Prerequisites

3B3 & 3B5 useful

Aims

The aims of the course are to:

  • provide an introduction to the world of modern power semiconductor devices, and their applications in the electronics Industry.
  • cover material specific to power semiconductor devices not covered in other modules in semiconductors.

Objectives

As specific objectives, by the end of the course students should be able to:

  • understand how the design of power semiconductor devices takes account of high voltage and currents
  • explain the practical operating conditions pertaining to power semiconductor devices
  • analyse power circuit segments
  • know the features of the main types of power electronic devices
  • understand the semiconductor technologies in power devices

Content

Introduction

Introduction to power electronics and power devices. Basics of power electronics, power devices and applications. P-N junction theory.

Power Diodes

High voltage pn junction theory. Breakdown theory. None punch-through (NPT) and punch-through (PT) high voltage junction. On-state - high level injection. Lifetime. Turn-off reverse recovery

Field Control

Curvature effects in high voltage junctions, Edge effects, Field plates, Terminations in power devices.

Power Bipolar Devices

Bipolar Juction transistor (BJT).

Thyristors

The thyristor (concept & technology). The GTO thyristor, Switching aids for transistors and thyristors.

Power MOS Devices

The power MOSFET: Concept, modes of operation. trade-offs.

Power MOSFET Modelling

The power MOSFET modelling, technologies and advanced devices.

Insulted Gate Bipolar Transistors

The Insulted Gate Bipolar Transistor (IGBT): modes of operation. trade-offs.

IGBTs II

The IGBTs, modelling, technologies and advanced concepts.

Power Integrated Circuits (PICs)

Power Intergated Circuits (PICS) and High Voltage Integrated Circuits (HVICs): introduction, lateral devices for PICs and HVICs, concepts, modes of operation.

Wide bandgap materials and devices.

Figure of merit (FOM) for wide bandgap materials. Architectures, designs and  challenges of Silicon Carbide (SiC) and Gasllium Nitride (GaN) devices.

Coursework

n/a

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 30/05/2023 15:26

Engineering Tripos Part IIB, 4B2: Power Microelectronics, 2018-19

Module Leader

Prof F Udrea

Lecturer

Prof F Udrea

Timing and Structure

Michaelmas term. 14 lectures + 2 examples classes. Assessment: 100% exam.

Prerequisites

3B3 & 3B5 useful

Aims

The aims of the course are to:

  • provide an introduction to the world of modern power semiconductor devices, and their applications in the electronics Industry.
  • cover material specific to power semiconductor devices not covered in other modules in semiconductors.

Objectives

As specific objectives, by the end of the course students should be able to:

  • understand how the design of power semiconductor devices takes account of high voltage and currents
  • explain the practical operating conditions pertaining to power semiconductor devices
  • analyse power circuit segments
  • know the features of the main types of power electronic devices
  • understand the semiconductor technologies in power devices

Content

Introduction

Introduction to power electronics and power devices. Basics of power electronics, power devices and applications. P-N junction theory.

Power Diodes

High voltage pn junction theory. Breakdown theory. None punch-through (NPT) and punch-through (PT) high voltage junction. On-state - high level injection. Lifetime. Turn-off reverse recovery

Field Control

Curvature effects in high voltage junctions, Edge effects, Field plates, Terminations in power devices.

Power Bipolar Devices

Bipolar Juction transistor (BJT).

Thyristors

The thyristor (concept & technology). The GTO thyristor, Switching aids for transistors and thyristors.

Power MOS Devices

The power MOSFE: Concept, modes of operation. trade-offs.

Power MOSFET Modelling

The power MOSFET modelling, technologies and advanced devices.

Insulted Gate Bipolar Transistors

The Insulted Gate Bipolar Transistor (IGBT): modes of operation. trade-offs.

IGBTs II

The IGBTs, modelling, technologies and advanced concepts.

Power Integrated Circuits (PICs)

Power Intergated Circuits (PICS) and High Voltage Integrated Circuits (HVICs): introduction, lateral devices for PICs and HVICs, concepts, modes of operation.

Coursework

Optional - Finite element design and analysis of novel high voltage devices in the HVM Lab led by Dr F Udrea

Booklists

Please see the Booklist for Group B Courses for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 17/05/2018 13:36

Engineering Tripos Part IIB, 4B2: Power Microelectronics, 2025-26

Module Leader

Prof F Udrea

Lecturer

Prof F Udrea

Timing and Structure

Lent term. 14 lectures (includes one example class). Assessment: 100% exam. Lectures will be in person. Check timetable in Moodle.

Prerequisites

3B3 & 3B5 useful

Aims

The aims of the course are to:

  • provide an introduction to the world of modern power semiconductor devices, and their applications in the electronics Industry.
  • cover material specific to power semiconductor devices not covered in other modules in semiconductors.

Objectives

As specific objectives, by the end of the course students should be able to:

  • understand how the design of power semiconductor devices takes account of high voltage and currents
  • explain the practical operating conditions pertaining to power semiconductor devices
  • analyse power circuit segments
  • know the features of the main types of power electronic devices
  • understand the semiconductor technologies in power devices

Content

Introduction

Introduction to power electronics and power devices. Basics of power electronics, power devices and applications. P-N junction theory.

Power Diodes

High voltage pn junction theory. Breakdown theory. None punch-through (NPT) and punch-through (PT) high voltage junction. On-state - high level injection. Lifetime. Turn-off reverse recovery

Field Control

Curvature effects in high voltage junctions, Edge effects, Field plates, Terminations in power devices.

Power Bipolar Devices

Bipolar Juction transistor (BJT).

Thyristors

The thyristor (concept & technology). The GTO thyristor, Switching aids for transistors and thyristors.

Power MOS Devices

The power MOSFET: Concept, modes of operation. trade-offs.

Power MOSFET Modelling

The power MOSFET modelling, technologies and advanced devices.

Insulted Gate Bipolar Transistors

The Insulted Gate Bipolar Transistor (IGBT): modes of operation. trade-offs.

IGBTs II

The IGBTs, modelling, technologies and advanced concepts.

Power Integrated Circuits (PICs)

Power Intergated Circuits (PICS) and High Voltage Integrated Circuits (HVICs): introduction, lateral devices for PICs and HVICs, concepts, modes of operation.

Wide bandgap materials and devices.

Figure of merit (FOM) for wide bandgap materials. Architectures, designs and  challenges of Silicon Carbide (SiC) and Gasllium Nitride (GaN) devices.

Coursework

n/a

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 04/06/2025 13:26

Engineering Tripos Part IIB, 4B2: Power Microelectronics, 2019-20

Module Leader

Prof F Udrea

Lecturer

Prof F Udrea

Timing and Structure

Michaelmas term. 14 lectures + 2 examples classes. Assessment: 100% exam.

Prerequisites

3B3 & 3B5 useful

Aims

The aims of the course are to:

  • provide an introduction to the world of modern power semiconductor devices, and their applications in the electronics Industry.
  • cover material specific to power semiconductor devices not covered in other modules in semiconductors.

Objectives

As specific objectives, by the end of the course students should be able to:

  • understand how the design of power semiconductor devices takes account of high voltage and currents
  • explain the practical operating conditions pertaining to power semiconductor devices
  • analyse power circuit segments
  • know the features of the main types of power electronic devices
  • understand the semiconductor technologies in power devices

Content

Introduction

Introduction to power electronics and power devices. Basics of power electronics, power devices and applications. P-N junction theory.

Power Diodes

High voltage pn junction theory. Breakdown theory. None punch-through (NPT) and punch-through (PT) high voltage junction. On-state - high level injection. Lifetime. Turn-off reverse recovery

Field Control

Curvature effects in high voltage junctions, Edge effects, Field plates, Terminations in power devices.

Power Bipolar Devices

Bipolar Juction transistor (BJT).

Thyristors

The thyristor (concept & technology). The GTO thyristor, Switching aids for transistors and thyristors.

Power MOS Devices

The power MOSFE: Concept, modes of operation. trade-offs.

Power MOSFET Modelling

The power MOSFET modelling, technologies and advanced devices.

Insulted Gate Bipolar Transistors

The Insulted Gate Bipolar Transistor (IGBT): modes of operation. trade-offs.

IGBTs II

The IGBTs, modelling, technologies and advanced concepts.

Power Integrated Circuits (PICs)

Power Intergated Circuits (PICS) and High Voltage Integrated Circuits (HVICs): introduction, lateral devices for PICs and HVICs, concepts, modes of operation.

Coursework

Optional - Finite element design and analysis of novel high voltage devices in the HVM Lab led by Dr F Udrea

Booklists

Please see the Booklist for Group B Courses for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 23/05/2019 15:59

Engineering Tripos Part IIB, 4B2: Power Microelectronics, 2022-23

Module Leader

Prof F Udrea

Lecturer

Prof F Udrea

Timing and Structure

Michaelmas term. 14 lectures (includes one example class). Assessment: 100% exam. Lectures will be in person. Check timetable in Moodle.

Prerequisites

3B3 & 3B5 useful

Aims

The aims of the course are to:

  • provide an introduction to the world of modern power semiconductor devices, and their applications in the electronics Industry.
  • cover material specific to power semiconductor devices not covered in other modules in semiconductors.

Objectives

As specific objectives, by the end of the course students should be able to:

  • understand how the design of power semiconductor devices takes account of high voltage and currents
  • explain the practical operating conditions pertaining to power semiconductor devices
  • analyse power circuit segments
  • know the features of the main types of power electronic devices
  • understand the semiconductor technologies in power devices

Content

Introduction

Introduction to power electronics and power devices. Basics of power electronics, power devices and applications. P-N junction theory.

Power Diodes

High voltage pn junction theory. Breakdown theory. None punch-through (NPT) and punch-through (PT) high voltage junction. On-state - high level injection. Lifetime. Turn-off reverse recovery

Field Control

Curvature effects in high voltage junctions, Edge effects, Field plates, Terminations in power devices.

Power Bipolar Devices

Bipolar Juction transistor (BJT).

Thyristors

The thyristor (concept & technology). The GTO thyristor, Switching aids for transistors and thyristors.

Power MOS Devices

The power MOSFET: Concept, modes of operation. trade-offs.

Power MOSFET Modelling

The power MOSFET modelling, technologies and advanced devices.

Insulted Gate Bipolar Transistors

The Insulted Gate Bipolar Transistor (IGBT): modes of operation. trade-offs.

IGBTs II

The IGBTs, modelling, technologies and advanced concepts.

Power Integrated Circuits (PICs)

Power Intergated Circuits (PICS) and High Voltage Integrated Circuits (HVICs): introduction, lateral devices for PICs and HVICs, concepts, modes of operation.

Wide bandgap materials and devices.

Figure of merit (FOM) for wide bandgap materials. Architectures, designs and  challenges of Silicon Carbide (SiC) and Gasllium Nitride (GaN) devices.

Coursework

n/a

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 06/10/2022 10:02

Engineering Tripos Part IIB, 4B2: Power Microelectronics, 2021-22

Module Leader

Prof F Udrea

Lecturer

Prof F Udrea

Timing and Structure

Michaelmas term. 14 lectures (includes one example class). Assessment: 100% exam. Note: First two lectures are ONLINE. check timetable in Moodle.

Prerequisites

3B3 & 3B5 useful

Aims

The aims of the course are to:

  • provide an introduction to the world of modern power semiconductor devices, and their applications in the electronics Industry.
  • cover material specific to power semiconductor devices not covered in other modules in semiconductors.

Objectives

As specific objectives, by the end of the course students should be able to:

  • understand how the design of power semiconductor devices takes account of high voltage and currents
  • explain the practical operating conditions pertaining to power semiconductor devices
  • analyse power circuit segments
  • know the features of the main types of power electronic devices
  • understand the semiconductor technologies in power devices

Content

Introduction

Introduction to power electronics and power devices. Basics of power electronics, power devices and applications. P-N junction theory.

Power Diodes

High voltage pn junction theory. Breakdown theory. None punch-through (NPT) and punch-through (PT) high voltage junction. On-state - high level injection. Lifetime. Turn-off reverse recovery

Field Control

Curvature effects in high voltage junctions, Edge effects, Field plates, Terminations in power devices.

Power Bipolar Devices

Bipolar Juction transistor (BJT).

Thyristors

The thyristor (concept & technology). The GTO thyristor, Switching aids for transistors and thyristors.

Power MOS Devices

The power MOSFET: Concept, modes of operation. trade-offs.

Power MOSFET Modelling

The power MOSFET modelling, technologies and advanced devices.

Insulted Gate Bipolar Transistors

The Insulted Gate Bipolar Transistor (IGBT): modes of operation. trade-offs.

IGBTs II

The IGBTs, modelling, technologies and advanced concepts.

Power Integrated Circuits (PICs)

Power Intergated Circuits (PICS) and High Voltage Integrated Circuits (HVICs): introduction, lateral devices for PICs and HVICs, concepts, modes of operation.

Wide bandgap materials and devices.

Figure of merit (FOM) for wide bandgap materials. Architectures, designs and  challenges of Silicon Carbide (SiC) and Gasllium Nitride (GaN) devices.

Coursework

n/a

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 05/10/2021 11:56

Engineering Tripos Part IIB, 4B2: Power Microelectronics, 2017-18

Module Leader

Prof F Udrea

Lecturer

Prof F Udrea

Timing and Structure

Michaelmas term. 14 lectures + 2 examples classes. Assessment: 100% exam.

Prerequisites

3B3 & 3B5 useful

Aims

The aims of the course are to:

  • provide an introduction to the world of modern power semiconductor devices, and their applications in the electronics Industry.
  • cover material specific to power semiconductor devices not covered in other modules in semiconductors.

Objectives

As specific objectives, by the end of the course students should be able to:

  • understand how the design of power semiconductor devices takes account of high voltage and currents
  • explain the practical operating conditions pertaining to power semiconductor devices
  • analyse power circuit segments
  • know the features of the main types of power electronic devices
  • understand the semiconductor technologies in power devices

Content

Introduction

Introduction to power electronics and power devices. Basics of power electronics, power devices and applications. P-N junction theory.

Power Diodes

High voltage pn junction theory. Breakdown theory. None punch-through (NPT) and punch-through (PT) high voltage junction. On-state - high level injection. Lifetime. Turn-off reverse recovery

Field Control

Curvature effects in high voltage junctions, Edge effects, Field plates, Terminations in power devices.

Power Bipolar Devices

Bipolar Juction transistor (BJT).

Thyristors

The thyristor (concept & technology). The GTO thyristor, Switching aids for transistors and thyristors.

Power MOS Devices

The power MOSFE: Concept, modes of operation. trade-offs.

Power MOSFET Modelling

The power MOSFET modelling, technologies and advanced devices.

Insulted Gate Bipolar Transistors

The Insulted Gate Bipolar Transistor (IGBT): modes of operation. trade-offs.

IGBTs II

The IGBTs, modelling, technologies and advanced concepts.

Power Integrated Circuits (PICs)

Power Intergated Circuits (PICS) and High Voltage Integrated Circuits (HVICs): introduction, lateral devices for PICs and HVICs, concepts, modes of operation.

Coursework

Optional - Finite element design and analysis of novel high voltage devices in the HVM Lab led by Dr F Udrea

Booklists

Please see the Booklist for Group B Courses for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 06/06/2017 13:57

Engineering Tripos Part IIB, 4A15: Aeroacoustics, 2020-21

Module Leader

Dr A Agarwal

Lecturers

Dr A. Agarwal and Dr A. Gregory

Timing and Structure

Lent term: 16 lectures + 2 examples classes; Assessment: 100% exam

Prerequisites

3A1 useful, 3C6 useful

Aims

The aims of the course are to:

  • analyse and solve a range of practical engineering problems associated with acoustics.

Objectives

As specific objectives, by the end of the course students should be able to:

  • understand what sound is and how we perceive it
  • understand how sound is generated and propagated
  • understand the acoustics of a wide range of music and noise production

Content

We will analyse and solve a range of practical engineering problems associated with acoustics. Examples include modelling of noise sources from jets, fans, musical instruments, human voice, kettles, dripping taps, whistling mice, singing flames, etc. We will also study ways to reduce noise either at the source or through acoustic damping. Upon completion of this module, the students would be well placed to pursue academic research in the area of acoustics and related fields or to work in industry (the topics covered in the course is of interest to GE, Rolls-Royce, Airbus, Dyson, Mitsubishi Heavy Industries, automotive companies, music industry, and acoustic consultancies).

 

What is sound and how does it propagate? (5L) (Dr A Gregoryl)

  • Introduction
  • The wave equation
  • Some simple 3D wave fields (plane waves, surface waves and spherical waves)
  • Sound transmission through different media

Simples sounds sources (2L) (Dr A Agarwal)

  • Pulsating sphere
  • Oscillating sphere
  • Example: loudspeaker with and without a cabinet

General solution to wave eqn (2L) (Dr. A Gregory)

  • Green's function
  • Sound from general mass and force sources (examples, Bliz siren and singing telephone wires)
 

Jet noise (Dr A Agarwal) (1 L)

  • Scaling of jet noise. How much does jet noise increase by if we double the jet's velocity?
  • What do jets and tuning forks have in common?
  • Lighthill's acoustic analogy
  • Sound of aircraft jets and handdriers 

Duct acoustics (2 L) (Dr A Agarwal)

  • Rectangular ducts (example, sound box)
  • Low-frequency sound in ducts
  • Circular ducts
  • Acoustic liners (Helmholtz resonator, blowing over a beer bottle)
 

Musical acoustics & everyday things (3L) (Drs A Agarwal and A Gregory)

  • String instruments 
  • Wind instruments 
  • Brass instruments 
  • Whistling of steam kettles and Rayleigh's Bird Call
  • Acoustics of dripping taps
 
 

Vocalisation (0.5 L) (Dr A Gregory)

  • Human speech, singing and overtone singing
  • Mice mating calls
 

Fan noise (1L) (Dr A Agarwal)

  • Rotor alone noise
  • Rotor-stator interaction noise
 

Thermoacoustics instability (0.5 L) (Dr A Agarwal)

  • Rijke tube experiment (singing flames)

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 01/09/2020 10:25

Engineering Tripos Part IIB, 4A15: Aeroacoustics, 2021-22

Module Leader

Dr A Agarwal

Lecturers

Dr A. Agarwal

Timing and Structure

Lent term: 16 lectures + 2 examples classes; Assessment: 100% exam

Prerequisites

No prerequisites. The module would be of interest to students with Aero, Mechnical, Bio or Civil Engineering background.

Aims

The aims of the course are to:

  • analyse and solve a range of practical engineering problems associated with acoustics.

Objectives

As specific objectives, by the end of the course students should be able to:

  • understand what sound is and how we perceive it
  • understand how sound is generated and propagated
  • understand the acoustics of a wide range of music and noise production

Content

We will analyse and solve a range of practical engineering problems associated with acoustics. Examples include modelling of noise sources from jets, fans, musical instruments, human voice, kettles, dripping taps, whistling mice, singing flames, etc. We will also study ways to reduce noise either at the source or through acoustic damping. Upon completion of this module, the students would be well placed to pursue academic research in the area of acoustics and related fields or to work in industry (the topics covered in the course is of interest to GE, Rolls-Royce, Airbus, Dyson, Mitsubishi Heavy Industries, automotive companies, music and biomedical industries, and acoustic consultancies).

 

What is sound and how does it propagate? (5L) (Dr A Agarwal)

  • Introduction
  • The wave equation
  • Some simple 3D wave fields (plane waves, surface waves and spherical waves)
  • Sound transmission through different media

Simples sounds sources (2L) (Dr A Agarwal)

  • Pulsating sphere
  • Oscillating sphere
  • Example: loudspeaker with and without a cabinet

General solution to wave eqn (2L) (Dr. A Agarwal)

  • Green's function
  • Sound from general mass and force sources (examples, Bliz siren and singing telephone wires)
 

Jet noise (Dr A Agarwal) (1 L)

  • Scaling of jet noise. How much does jet noise increase by if we double the jet's velocity?
  • What do jets and tuning forks have in common?
  • Lighthill's acoustic analogy
  • Sound of aircraft jets and handdriers 

Duct acoustics (2 L) (Dr A Agarwal)

  • Rectangular ducts (example, sound box)
  • Low-frequency sound in ducts
  • Circular ducts
  • Acoustic liners (Helmholtz resonator, blowing over a beer bottle)
 

Musical acoustics & everyday things (3L) (Drs A Agarwal)

  • String instruments 
  • Wind instruments 
  • Brass instruments 
  • Whistling of steam kettles and Rayleigh's Bird Call
  • Acoustics of dripping taps
 
 

Vocalisation (0.5 L) (Dr A Agarwal)

  • Human speech, singing and overtone singing
  • Mice mating calls
 

Fan noise (1L) (Dr A Agarwal)

  • Rotor alone noise
  • Rotor-stator interaction noise
 

Thermoacoustics instability (0.5 L) (Dr A Agarwal)

  • Rijke tube experiment (singing flames)

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 21/05/2021 13:24

Engineering Tripos Part IIB, 4A15: Aeroacoustics, 2017-18

Module Leader

Dr A Agarwal

Lecturers

Dr Agarwal, Professor Ann Dowling and Professor Nigel Peake

Timing and Structure

16 lectures + 2 examples classes; Assessment: 100% exam

Prerequisites

3A1 assumed

Aims

The aims of the course are to:

  • analyse and solve a range of practical engineering problems associated with acoustics.

Objectives

As specific objectives, by the end of the course students should be able to:

  • understand how sound is generated.
  • understand how sound propagates in free space and within ducts.
  • understand shielding and scattering of sound.
  • model sound sources for various aeroacoustic problems and design for low noise.

Content

The students are expected to analyse and solve a range of practical engineering problems associated with acoustics. Examples include modelling of noise sources from jets, fans, wind turbines, vacuum cleaners, etc. and exploring ways to reduce noise either at the source or through acoustic damping. Upon completion of this module, the students would be well placed to pursue research in the area of acoustics and related fields. Students would also be more employable (the topics covered in the course is of interest to GE, Rolls-Royce, Dyson, Mitsubishi Heavy Industries, automobile companies and acoustic consultancies)

Classical Acoustics (5L) (Dr A Agarwal)

  • The wave equation and simple solutions
  • Impedance
  • Energy
  • Generalised functions and Green’s function
  • Sound from simple sources (monopoles, dipole, compact sources)

Jet noise (3L) (Dr A Agarwal)

  • Compact quadrupole
  • Sound from a single eddy
  • Sound from a random distribution of eddies
  • Lighthill’s eighth-power law
  • Convection and refraction effects

Sound propagation (2L) (Prof. N. Peake)

  • Ray theory
  • Snell’s law
  • Refraction by temperature gradients

Trailing edge noise (2L) (Prof. N. Peake)

  • Scattering and shielding
  • Scattering from a source near a sharp edge
  • Example: Wind turbine noise and the aeroacoustics of the owl

Duct acoustics (2L) (Prof. A P Dowling)

  • Normal modes
  • Concept of cut-off modes
  • Damping/liner
  • Helmholtz resonator
  • Example: Thermoacoustic instability

Rotor/Fan Noise (2L) (Prof. A P Dowling)

  • Rotor alone noise
  • Rotor/Stator interaction noise
  • Examples: Aircraft noise, fan and turbine noise

Booklists

Please see the Booklist for Group A Courses for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 01/06/2018 12:07

Pages

Subscribe to IA2