Engineering Tripos Part IIA, 3D3: Structural Materials & Design, 2024-25
Module Leader
Lecturers
Dr R Foster, Dr J Becque, Prof A Lawrence
Lab Leader
Timing and Structure
Michaelmas Term. 16 Lectures.
Aims
The aims of the course are to:
- Provide a general understanding of the relationship between the properties of common structural materials, and the principles and approaches underpinning their use in structural design
- Provide a bridge between the fundamental general engineering understanding of structures and materials developed in Part I and the applied specialist modules of Part II
- Provide knowledge and knowhow enabling structural designers to improve our use of energy and material in the design of the built environment while providing safe, useful structures for people to use
Objectives
As specific objectives, by the end of the course students should be able to:
- [1] Use the lower-bound theory of plasticity to perform load-path design of structural arrangements and to appreciate the benefits and limitations of the approach
- [2] Consider the influence of risk, and variability of loading and material properties, in structural design and calculation
- [3] Explain the environmental impacts of structural material and design choices
- [4] Understand and carry out early-stage structural design with various structural materials
- [4.1] Identify the theoretical and practical considerations governing structural design in various materials and explain how these may be accommodated in design
- [4.2] Make reasonable conceptual design decisions regarding appropriate structural form, initial layout and initial member sizing for simple structures in various materials;
- [4.3] Perform preliminary technical design calculations for simple structures in various materials
- [4.4] Determine what design approaches may be appropriate, and what calculations necessary, for more complex structures in various materials
Content
The implications of the general principles of structural mechanics – equilibrium, compatibility, constitutive laws, and stability – are investigated for different materials. This leads to discussion of typical structural forms in the various materials, the reasons for adopting them, and appropriate methods of construction. The significant types of structural behaviour, and therefore the most useful methods of analysis and calculation, are investigated for the different material types. Our basic aim is to establish means of making reasonable preliminary decisions about structural form, layout and initial sizing of structural members made from a range of common construction materials.
Design methodologies will be developed, and design of typical elements will be discussed, for:
- materials of low tensile but high compressive strength, such as masonry and glass;
- composite materials of low tensile strength combined with a ductile tensile material, such as reinforced concrete;
- high-strength, ductile materials such as steel and aluminium alloys;
- moderate- to high-strength, anisotropic, brittle materials such as engineered timber.
The critical modes of failure of structures made from these materials tend to differ, as do other considerations such as environmental impacts, so design approaches will be correspondingly different.
Weeks 1-2 provide an introduction to a number of important considerations and approaches in structural design across materials, such as: loadpaths and the lowerbound theorem; limit state design and variability; resource efficiency and sustainability
Weeks 3-8 apply these considerations and approaches to design with various structural materials including: masonry; glass; reinforced concrete; steel and timber.
Coursework
Concrete Lab
Learning objectives:
To be able to:
Practical information:
Details will be available on the course Moodle page early in the term.
Full Technical Report:
Students will have the option to submit a Full Technical Report.
Booklists
Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D1
Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.
S1
The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.
S3
Understanding of the requirement for engineering activities to promote sustainable development.
S4
Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P4
Understanding use of technical literature and other information sources.
P6
Understanding of appropriate codes of practice and industry standards.
P7
Awareness of quality issues.
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 31/05/2024 07:29
Engineering Tripos Part IIA, 3D3: Structural Materials & Design, 2023-24
Module Leader
Lecturers
Dr J Orr, Dr J Becque
Lab Leader
Timing and Structure
Michaelmas Term. 16 Lectures.
Aims
The aims of the course are to:
- Provide a general understanding of the relationship between the properties of common structural materials, and the principles and approaches underpinning their use in structural design
- Provide a bridge between the fundamental general engineering understanding of structures and materials developed in Part I and the applied specialist modules of Part II
- Provide knowledge and knowhow enabling structural designers to improve our use of energy and material in the design of the built environment while providing safe, useful structures for people to use
Objectives
As specific objectives, by the end of the course students should be able to:
- [1] Use the lower-bound theory of plasticity to perform load-path design of structural arrangements and to appreciate the benefits and limitations of the approach
- [2] Consider the influence of risk, and variability of loading and material properties, in structural design and calculation
- [3] Explain the environmental impacts of structural material and design choices
- [4] Understand and carry out early-stage structural design with various structural materials
- [4.1] Identify the theoretical and practical considerations governing structural design in various materials and explain how these may be accommodated in design
- [4.2] Make reasonable conceptual design decisions regarding appropriate structural form, initial layout and initial member sizing for simple structures in various materials;
- [4.3] Perform preliminary technical design calculations for simple structures in various materials
- [4.4] Determine what design approaches may be appropriate, and what calculations necessary, for more complex structures in various materials
Content
The implications of the general principles of structural mechanics – equilibrium, compatibility, constitutive laws, and stability – are investigated for different materials. This leads to discussion of typical structural forms in the various materials, the reasons for adopting them, and appropriate methods of construction. The significant types of structural behaviour, and therefore the most useful methods of analysis and calculation, are investigated for the different material types. Our basic aim is to establish means of making reasonable preliminary decisions about structural form, layout and initial sizing of structural members made from a range of common construction materials.
Design methodologies will be developed, and design of typical elements will be discussed, for:
- materials of low tensile but high compressive strength, such as masonry and glass;
- composite materials of low tensile strength combined with a ductile tensile material, such as reinforced concrete;
- high-strength, ductile materials such as steel and aluminium alloys;
- moderate- to high-strength, anisotropic, brittle materials such as engineered timber.
The critical modes of failure of structures made from these materials tend to differ, as do other considerations such as environmental impacts, so design approaches will be correspondingly different.
Weeks 1-2 provide an introduction to a number of important considerations and approaches in structural design across materials, such as: loadpaths and the lowerbound theorem; limit state design and variability; resource efficiency and sustainability
Weeks 3-8 apply these considerations and approaches to design with various structural materials including: masonry; glass; reinforced concrete; steel and timber.
Coursework
Concrete Lab
Learning objectives:
To be able to:
Practical information:
Details will be available on the course Moodle page early in the term.
Full Technical Report:
Students will have the option to submit a Full Technical Report.
Booklists
Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D1
Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.
S1
The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.
S3
Understanding of the requirement for engineering activities to promote sustainable development.
S4
Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P4
Understanding use of technical literature and other information sources.
P6
Understanding of appropriate codes of practice and industry standards.
P7
Awareness of quality issues.
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 30/05/2023 15:20
Engineering Tripos Part IIA, 3D3: Structural Materials & Design, 2022-23
Module Leader
Lecturers
Dr R Foster, Dr J Becque
Lab Leader
Timing and Structure
Michaelmas Term. 16 Lectures.
Aims
The aims of the course are to:
- Provide a general understanding of the relationship between the properties of common structural materials, and the principles and approaches underpinning their use in structural design
- Provide a bridge between the fundamental general engineering understanding of structures and materials developed in Part I and the applied specialist modules of Part II
- Provide knowledge and knowhow enabling structural designers to improve our use of energy and material in the design of the built environment while providing safe, useful structures for people to use
Objectives
As specific objectives, by the end of the course students should be able to:
- [1] Use the lower-bound theory of plasticity to perform load-path design of structural arrangements and to appreciate the benefits and limitations of the approach
- [2] Consider the influence of risk, and variability of loading and material properties, in structural design and calculation
- [3] Explain the environmental impacts of structural material and design choices
- [4] Understand and carry out early-stage structural design with various structural materials
- [4.1] Identify the theoretical and practical considerations governing structural design in various materials and explain how these may be accommodated in design
- [4.2] Make reasonable conceptual design decisions regarding appropriate structural form, initial layout and initial member sizing for simple structures in various materials;
- [4.3] Perform preliminary technical design calculations for simple structures in various materials
- [4.4] Determine what design approaches may be appropriate, and what calculations necessary, for more complex structures in various materials
Content
The implications of the general principles of structural mechanics – equilibrium, compatibility, constitutive laws, and stability – are investigated for different materials. This leads to discussion of typical structural forms in the various materials, the reasons for adopting them, and appropriate methods of construction. The significant types of structural behaviour, and therefore the most useful methods of analysis and calculation, are investigated for the different material types. Our basic aim is to establish means of making reasonable preliminary decisions about structural form, layout and initial sizing of structural members made from a range of common construction materials.
Design methodologies will be developed, and design of typical elements will be discussed, for:
- materials of low tensile but high compressive strength, such as masonry and glass;
- composite materials of low tensile strength combined with a ductile tensile material, such as reinforced concrete;
- high-strength, ductile materials such as steel and aluminium alloys;
- moderate- to high-strength, anisotropic, brittle materials such as engineered timber.
The critical modes of failure of structures made from these materials tend to differ, as do other considerations such as environmental impacts, so design approaches will be correspondingly different.
Weeks 1-2 provide an introduction to a number of important considerations and approaches in structural design across materials, such as: loadpaths and the lowerbound theorem; limit state design and variability; resource efficiency and sustainability
Weeks 3-8 apply these considerations and approaches to design with various structural materials including: masonry; glass; reinforced concrete; steel and timber.
Coursework
Concrete Lab
Learning objectives:
To be able to:
Practical information:
Details will be available on the course Moodle page early in the term.
Full Technical Report:
Students will have the option to submit a Full Technical Report.
Booklists
Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D1
Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.
S1
The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.
S3
Understanding of the requirement for engineering activities to promote sustainable development.
S4
Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P4
Understanding use of technical literature and other information sources.
P6
Understanding of appropriate codes of practice and industry standards.
P7
Awareness of quality issues.
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 24/05/2022 15:53
Engineering Tripos Part IIA, 3D3: Structural Materials & Design, 2021-22
Module Leader
Lecturers
Dr R Foster, Prof A Lawrence, Dr J Becque
Lab Leader
Timing and Structure
Michaelmas Term. 16 Lectures.
Aims
The aims of the course are to:
- Provide a general understanding of the relationship between the properties of common structural materials, and the principles and approaches underpinning their use in structural design
- Provide a bridge between the fundamental general engineering understanding of structures and materials developed in Part I and the applied specialist modules of Part II
- Provide knowledge and knowhow enabling structural designers to improve our use of energy and material in the design of the built environment while providing safe, useful structures for people to use
Objectives
As specific objectives, by the end of the course students should be able to:
- [1] Use the lower-bound theory of plasticity to perform load-path design of structural arrangements and to appreciate the benefits and limitations of the approach
- [2] Consider the influence of risk, and variability of loading and material properties, in structural design and calculation
- [3] Explain the environmental impacts of structural material and design choices
- [4] Understand and carry out early-stage structural design with various structural materials
- [4.1] Identify the theoretical and practical considerations governing structural design in various materials and explain how these may be accommodated in design
- [4.2] Make reasonable conceptual design decisions regarding appropriate structural form, initial layout and initial member sizing for simple structures in various materials;
- [4.3] Perform preliminary technical design calculations for simple structures in various materials
- [4.4] Determine what design approaches may be appropriate, and what calculations necessary, for more complex structures in various materials
Content
The course this year will be 'blended', meaning that a mix of in-person, online live (Teams) and online recorded (Moodle) components will be used. We plan to deliver some of our lectures in-person in the department (although these will also be recorded and subsequently uploaded to Moodle). We plan to deliver others remotely through a combination of recorded lectures and 'live' Q&As. Recorded lectures have been updated for this year and benefit from the many lessons we learned during 2020. Full details are available on the course Moodle page.
The implications of the general principles of structural mechanics – equilibrium, compatibility, constitutive laws, and stability – are investigated for different materials. This leads to discussion of typical structural forms in the various materials, the reasons for adopting them, and appropriate methods of construction. The significant types of structural behaviour, and therefore the most useful methods of analysis and calculation, are investigated for the different material types. Our basic aim is to establish means of making reasonable preliminary decisions about structural form, layout and initial sizing of structural members made from a range of common construction materials.
Design methodologies will be developed, and design of typical elements will be discussed, for:
- materials of low tensile but high compressive strength, such as masonry and glass;
- composite materials of low tensile strength combined with a ductile tensile material, such as reinforced concrete;
- high-strength, ductile materials such as steel and aluminium alloys;
- moderate- to high-strength, anisotropic, brittle materials such as engineered timber.
The critical modes of failure of structures made from these materials tend to differ, as do other considerations such as environmental impacts, so design approaches will be correspondingly different.
Lecture timetable
| Lecture | Date | Timeslot- | Lecturer- | Format and location | |
|---|---|---|---|---|---|
| Week 1 | 1. Introduction and overview | Thu 7th Oct | 1100-1200 | Dr Foster | Recorded lecture (Moodle) |
| 2. Load paths and lower bounds | Mon 11th Oct | 0900-1000 | Dr Foster | Recorded lecture (Moodle) + 0940-0955 live Q&A (Teams) | |
| Week 2 | 3. Limit states and variability | Thu 14th Oct | 1100-1200 | Dr Foster | Recorded lecture (Moodle) |
| 4. Resource efficiency | sustainability | Mon 18th Oct | 0900-1000 | Dr Foster | Recorded lecture (Moodle) + 0940-0955 live Q&A (Teams) | |
| Week 3 | 5. Timber design 1 | Thu 21st Oct | 1100-1200 | Prof Lawrence | In-person lecture (LR2) |
| 6. Timber design 2 | Mon 25th Oct | 0900-1000 | Prof Lawrence | In-person lecture (LR2) | |
| Week 4 | 7. Timber design 3 | Thu 28th Oct | 1100-1200 | Prof Lawrence | In-person lecture (LR2) |
| 8. Masonry design | Mon 1st Nov | 0900-1000 | Dr Foster | Recorded lecture (Moodle) | |
| Week 5 | 9. Glass design 1 | Thu 4th Nov | 1100-1200 | Dr Foster | Recorded lecture (Moodle) |
| 10. Glass design 2 | Mon 8th Nov | 0900-1000 | Dr Foster | Recorded lecture (Moodle) + 0940-0955 live Q&A (Teams) | |
| Week 6 | 11. Concrete design 1 | Thu 11th Nov | 1100-1200 | Dr Foster | Recorded lecture (Moodle) |
| 12. Concrete design 2 | Mon 15th Nov | 0900-1000 | Dr Foster | Recorded lecture (Moodle) + 0940-0955 live Q&A (Teams) | |
| Week 7 | 13. Steel design 1 | Thu 18th Nov | 1100-1200 | Dr Becque | In-person lecture (LR2) |
| 14. Steel design 2 | Mon 22nd Nov | 0900-1000 | Dr Becque | In-person lecture (LR2) | |
| Week 8 | 15. Steel design 3 | Thu 25th Nov | 1100-1200 | Dr Becque | In-person lecture (LR2) |
| 16. Conclusions | Mon 29th Nov | 0900-1000 | Dr Foster | Recorded lecture (Moodle) + 0940-0955 live Q&A (Teams) |
Coursework
Concrete Lab
This lab will run in 'blended' form for 2021, with the morning session remote and the afternoon session in-person. Feedback from our first experience of running the lab in this way in 2020 was overwhelmingly positive, so we have changed very little this year. We retain the capability to run the afternoon session fully remotely, but we are hopeful that this will not be needed this year.
Learning objectives:
To be able to:
Practical information:
Details will be available on the course Moodle page early in the term.
Full Technical Report:
Students will have the option to submit a Full Technical Report.
Booklists
Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D1
Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.
S1
The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.
S3
Understanding of the requirement for engineering activities to promote sustainable development.
S4
Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P4
Understanding use of technical literature and other information sources.
P6
Understanding of appropriate codes of practice and industry standards.
P7
Awareness of quality issues.
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 01/10/2021 03:45
Engineering Tripos Part IIA, 3D3: Structural Materials & Design, 2025-26
Module Leader
Lecturers
Dr R Foster, Dr J Becque, Prof A Lawrence
Lab Leader
Timing and Structure
Michaelmas Term. 16 Lectures.
Aims
The aims of the course are to:
- Provide a general understanding of the relationship between the properties of common structural materials, and the principles and approaches underpinning their use in structural design
- Provide a bridge between the fundamental general engineering understanding of structures and materials developed in Part I and the applied specialist modules of Part II
- Provide knowledge and knowhow enabling structural designers to improve our use of energy and material in the design of the built environment while providing safe, useful structures for people to use
Objectives
As specific objectives, by the end of the course students should be able to:
- [1] Use the lower-bound theory of plasticity to perform load-path design of structural arrangements and to appreciate the benefits and limitations of the approach
- [2] Consider the influence of risk, and variability of loading and material properties, in structural design and calculation
- [3] Explain the environmental impacts of structural material and design choices
- [4] Understand and carry out early-stage structural design with various structural materials
- [4.1] Identify the theoretical and practical considerations governing structural design in various materials and explain how these may be accommodated in design
- [4.2] Make reasonable conceptual design decisions regarding appropriate structural form, initial layout and initial member sizing for simple structures in various materials;
- [4.3] Perform preliminary technical design calculations for simple structures in various materials
- [4.4] Determine what design approaches may be appropriate, and what calculations necessary, for more complex structures in various materials
Content
The implications of the general principles of structural mechanics – equilibrium, compatibility, constitutive laws, and stability – are investigated for different materials. This leads to discussion of typical structural forms in the various materials, the reasons for adopting them, and appropriate methods of construction. The significant types of structural behaviour, and therefore the most useful methods of analysis and calculation, are investigated for the different material types. Our basic aim is to establish means of making reasonable preliminary decisions about structural form, layout and initial sizing of structural members made from a range of common construction materials.
Design methodologies will be developed, and design of typical elements will be discussed, for:
- materials of low tensile but high compressive strength, such as masonry and glass;
- composite materials of low tensile strength combined with a ductile tensile material, such as reinforced concrete;
- high-strength, ductile materials such as steel and aluminium alloys;
- moderate- to high-strength, anisotropic, brittle materials such as engineered timber.
The critical modes of failure of structures made from these materials tend to differ, as do other considerations such as environmental impacts, so design approaches will be correspondingly different.
Weeks 1-2 provide an introduction to a number of important considerations and approaches in structural design across materials, such as: loadpaths and the lowerbound theorem; limit state design and variability; resource efficiency and sustainability
Weeks 3-8 apply these considerations and approaches to design with various structural materials including: masonry; glass; reinforced concrete; steel and timber.
Coursework
Concrete Lab
Learning objectives:
To be able to:
Practical information:
Details will be available on the course Moodle page early in the term.
Full Technical Report:
Students will have the option to submit a Full Technical Report.
Booklists
Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D1
Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.
S1
The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.
S3
Understanding of the requirement for engineering activities to promote sustainable development.
S4
Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P4
Understanding use of technical literature and other information sources.
P6
Understanding of appropriate codes of practice and industry standards.
P7
Awareness of quality issues.
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 04/06/2025 13:18
Engineering Tripos Part IIA, 3D3: Structural Materials & Design, 2020-21
Module Leader
Lecturers
Dr R Foster, Prof A Lawrence, Dr J Becque
Lab Leader
Timing and Structure
Michaelmas Term. 16 Lectures.
Aims
The aims of the course are to:
- cover the basic principles of practical design of typical engineering structures, with applications across a range of commonly-used structural materials.
- establish links between the theory of structures, taught in the Part I courses IA Structural Mechanics and IB Structures, and the properties of materials as covered in courses on Materials and Engineering Applications.
- study what differing approaches to design are appropriate for structures in different materials.
- develop a design methodology that provides a firm basis for the structures courses taught in Part IIA and for the more advanced courses in the fourth year.
Objectives
As specific objectives, by the end of the course students should be able to:
- choose structural forms appropriate to different materials
- identify factors (requirements, properties, behaviour) governing structural design in various materials
- make reasonable initial layout and sizing choices for simple structures in various materials
- carry out design calculations for basic structural elements in various materials
- determine what design approaches will be appropriate, and what calculations necessary, for more complex structures in various materials.
- consider the influence of risk, and variability of loading and material properties, in structural design and calculation
- consider the environmental impacts of structural material and design choices
Content
The implications of the general principles of structural mechanics – equilibrium, compatibility, constitutive laws, and stability – are investigated for different materials. This leads to discussion of typical structural forms in the various materials, the reasons for adopting them, and appropriate methods of construction. The significant types of structural behaviour, and therefore the most useful methods of analysis and calculation, are investigated for the different material types. Our basic aim is to establish means of making reasonable preliminary decisions about structural form, layout and initial sizing of structural members made from a range of common construction materials.
Design methodologies will be developed, and design of typical elements will be discussed, for:
- materials of low tensile but high compressive strength, such as masonry and glass;
- composite materials of low tensile strength combined with a ductile tensile material, such as reinforced concrete;
- high-strength, ductile materials such as steel and aluminium alloys;
- moderate- to high-strength, anisotropic, brittle materials such as engineered timber.
The critical modes of failure of structures made from these materials tend to differ, as do other considerations such as environmental impacts, so design approaches will be correspondingly different.
Overview and principles (4 Lecture equivalent)
- Introduction to the course and overview of structural materials and implications of material properties for structural design
- Load paths and the application (and limitations) of the lowerbound theory in structural design
- Limit state design and consideration of material variability in achieving appropriate levels of reliability
- Resource efficiency and sustainability in structural design
Masonry (1 Lecture equivalent)
Concrete and reinforced concrete (2 Lecture equivalent)
Glass (2 Lecture equivalent)
Ductile Metals (3 Lecture eqivalent)
Timber (3 Lecture equivalent)
Conclusions (1 Lecture equivalent)
Coursework
Concrete Lab
Learning objectives:
To be able to:
Practical information:
Details will be available on the course Moodle page early in the term.
Full Technical Report:
Students will have the option to submit a Full Technical Report.
Booklists
Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D1
Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.
S1
The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.
S3
Understanding of the requirement for engineering activities to promote sustainable development.
S4
Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P4
Understanding use of technical literature and other information sources.
P6
Understanding of appropriate codes of practice and industry standards.
P7
Awareness of quality issues.
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 05/10/2020 02:57
Engineering Tripos Part IIA, 3D3: Structural Materials & Design, 2019-20
Module Leader
Lecturers
Dr R Foster, Prof A Lawrence, Prof F A McRobie
Lab Leader
Timing and Structure
Michaelmas Term. 16 Lectures.
Aims
The aims of the course are to:
- cover the basic principles of practical design of typical engineering structures, with applications across a range of commonly-used structural materials.
- establish links between the theory of structures, taught in the Part I courses IA Structural Mechanics and IB Structures, and the properties of materials as covered in courses on Materials and Engineering Applications.
- study what differing approaches to design are appropriate for structures in different materials.
- develop a design methodology that provides a firm basis for the structures courses taught in Part IIA and for the more advanced courses in the fourth year.
Objectives
As specific objectives, by the end of the course students should be able to:
- have developed a good understanding of the structural forms appropriate in the various materials.
- be aware of the likely critical factors (requirements, properties, behaviour) for design in the different materials.
- be able to make sensible initial layout and sizing choices for simple structures in the various materials.
- be able to carry out design calculations for basic structural elements in the various materials.
- be aware of what design approaches will be appropriate, and what calculations necessary, for more complex structures in the various materials.
- appreciate the influence of risk, and variability of loading and material properties, on structural design and calculations.
Content
The implications of the general principles of structural mechanics – equilibrium, compatibility, constitutive laws, and stability – are investigated for different materials. This leads to discussion of typical structural forms in the various materials, the reasons for adopting them, and appropriate methods of construction. The significant types of structural behaviour, and therefore the most useful methods of analysis and calculation, are investigated for the different material types. A basic aim is to establish means of making reasonable preliminary decisions about structural form and layout, and initial sizing of members, before detailed calculation need begin.
Design methodologies will be developed, and design of typical elements will be discussed, for the following materials:
- high-strength, ductile materials such as steel and aluminium alloys
- moderate- to high-strength, anisotropic, brittle materials such as advanced composites and timber
- materials of low tensile but high compressive strength, such as concrete and masonry
- reinforced concrete where concrete is combined with a ductile tensile material
- brittle materials, such as glass
The critical modes of failure of structures made from these materials tend to differ – for example, global and local instability play a very significant role in thin-walled structures of high-strength materials, while shear-induced delamination is a major concern only in wood and composites. So design approaches will be correspondingly different.
Overview and principles (5L)
- Introduction to the course and overview of structural materials and implications of material properties for structural design
- Load paths and the application (and limitations) of the lowerbound theory in structural design
- Limit state design and consideration of material variability in achieving appropriate levels of reliability
- Resource efficiency and sustainability in structural design
- Form, forces and masonry - "I like an arch"
Ductile Metals (primarily steel) (3L)
Timber (3L)
Fibre Composites (1L)
Concrete and reinforced concrete (3L)
- Concrete and reinforced concrete
- Ultimate design for flexure, shear and compression
- Serviceability design and detailing
Glass (1L)
Coursework
Concrete Lab
Learning objectives:
- To be familiar with the common ingedients of concrete and their properties;
- To be able to design a concrete mix to satisfy certain technical requirements and cast a trial cube;
- To have first-hand experience of casting reinforced concrete beams and various plain concrete specimens for subsequent testing
- To be able to observe and record results of destructive testing and identify different failure modes in concrete
- To be able to compare empirical results with theoretical predictions based on as built-data, and to evaluate the effectiveness and limitations of the theory
Practical information:
- Sessions will take place in the Concrete Lab, Trumpington Street site, during weeks [1-8].
- This activity does not involve preliminary work.
- A sign-up sheet will be posted on the Inglis Mezzanine noticeboard.
Full Technical Report:
Students will have the option to submit a Full Technical Report.
Booklists
Please see the Booklist for Part IIA Courses for references for this module.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D1
Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.
S1
The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.
S3
Understanding of the requirement for engineering activities to promote sustainable development.
S4
Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P4
Understanding use of technical literature and other information sources.
P6
Understanding of appropriate codes of practice and industry standards.
P7
Awareness of quality issues.
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 02/10/2019 15:02
Engineering Tripos Part IIA, 3D3: Structural Materials & Design, 2017-18
Module Leader
Lecturers
Dr M Overend and Mr F A McRobie
Lab Leader
Dr C Morley
Timing and Structure
Michaelmas Term. 16 Lectures.
Aims
The aims of the course are to:
- cover the basic principles of practical design of typical engineering structures, with applications across a range of commonly-used structural materials.
- establish links between the theory of structures, taught in the Part I courses IA Structural Mechanics and IB Structures, and the properties of materials as covered in courses on Materials and Engineering Applications.
- study what differing approaches to design are appropriate for structures in different materials.
- develop a design methodology that provides a firm basis for the structures courses taught in Part IIA and for the more advanced courses in the fourth year.
Objectives
As specific objectives, by the end of the course students should be able to:
- have developed a good understanding of the structural forms appropriate in the various materials.
- be aware of the likely critical factors (requirements, properties, behaviour) for design in the different materials.
- be able to make sensible initial layout and sizing choices for simple structures in the various materials.
- be able to carry out design calculations for basic structural elements in the various materials.
- be aware of what design approaches will be appropriate, and what calculations necessary, for more complex structures in the various materials.
- appreciate the influence of risk, and variability of loading and material properties, on structural design and calculations.
Content
The implications of the general principles of structural mechanics – equilibrium, compatibility, constitutive laws, and stability – are investigated for different materials. This leads to discussion of typical structural forms in the various materials, the reasons for adopting them, and appropriate methods of construction. The significant types of structural behaviour, and therefore the most useful methods of analysis and calculation, are investigated for the different material types. A basic aim is to establish means of making reasonable preliminary decisions about structural form and layout, and initial sizing of members, before detailed calculation need begin.
Design methodologies will be developed, and design of typical elements will be discussed, for the following materials:
- high-strength, ductile materials such as steel and aluminium alloys
- moderately-high-strength, anisotropic, brittle materials such as advanced composites and timber
- materials of low tensile but high compressive strength, such as concrete and masonry
- reinforced concrete where concrete is combined with a ductile tensile material
- brittle materials, such as glass
The critical modes of failure of structures made from these materials tend to differ – for example, global and local instability play a very significant role in thin-walled structures of high-strength materials, while shear-induced delamination is a major concern only in wood and composites. So design approaches will be correspondingly different.
Overview and General Principles (5L)
- evolution of structural form, with case studies. Influence of available construction techniques. Bridge forms and materials economic in certain span ranges.
- requirements of a successful structure (considering collapse, buckling, deflection, cracking, imposed deformation, fatigue, fire, accident, corrosion etc, as well as construction method, cost and sustainability)
- relevant material properties (modulus, anisotropy, strength, toughness, cost, fabrication possibilities, energy content)
- risk, variability, and limit state design (brief introduction)
- Span-to-depth ratio and design.
- ‘load path’ approaches to simplified design, and the ‘lower bound’ theorem as a design tool, with limitations.
Design approaches for different materials
(in most cases, highlighting the important aspects of behaviour, covering the initial design of typical elements such as beams, columns and joints, and studying forms for complete structures).
Ductile Metals (primarily steel) (3L)
Masonry (mention) and Reinforced Concrete (3L)
Timber and Advanced Composites (3L)
Glass (2L)
Coursework
[Coursework Title]
Learning objectives:
Practical information:
- Sessions will take place in [Location], during week(s) [xxx].
- This activity [involves/doesn't involve] preliminary work ([estimated duration]).
Full Technical Report:
Students [will/won't] have the option to submit a Full Technical Report.
Booklists
Please see the Booklist for Part IIA Courses for references for this module.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D1
Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.
S1
The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.
S3
Understanding of the requirement for engineering activities to promote sustainable development.
S4
Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P4
Understanding use of technical literature and other information sources.
P6
Understanding of appropriate codes of practice and industry standards.
P7
Awareness of quality issues.
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 03/08/2017 15:31
Engineering Tripos Part IIA, 3D3: Structural Materials & Design, 2018-19
Module Leader
Lecturers
Dr M Overend and Prof F A McRobie
Lab Leader
Dr C Morley
Timing and Structure
Michaelmas Term. 16 Lectures.
Aims
The aims of the course are to:
- cover the basic principles of practical design of typical engineering structures, with applications across a range of commonly-used structural materials.
- establish links between the theory of structures, taught in the Part I courses IA Structural Mechanics and IB Structures, and the properties of materials as covered in courses on Materials and Engineering Applications.
- study what differing approaches to design are appropriate for structures in different materials.
- develop a design methodology that provides a firm basis for the structures courses taught in Part IIA and for the more advanced courses in the fourth year.
Objectives
As specific objectives, by the end of the course students should be able to:
- have developed a good understanding of the structural forms appropriate in the various materials.
- be aware of the likely critical factors (requirements, properties, behaviour) for design in the different materials.
- be able to make sensible initial layout and sizing choices for simple structures in the various materials.
- be able to carry out design calculations for basic structural elements in the various materials.
- be aware of what design approaches will be appropriate, and what calculations necessary, for more complex structures in the various materials.
- appreciate the influence of risk, and variability of loading and material properties, on structural design and calculations.
Content
The implications of the general principles of structural mechanics – equilibrium, compatibility, constitutive laws, and stability – are investigated for different materials. This leads to discussion of typical structural forms in the various materials, the reasons for adopting them, and appropriate methods of construction. The significant types of structural behaviour, and therefore the most useful methods of analysis and calculation, are investigated for the different material types. A basic aim is to establish means of making reasonable preliminary decisions about structural form and layout, and initial sizing of members, before detailed calculation need begin.
Design methodologies will be developed, and design of typical elements will be discussed, for the following materials:
- high-strength, ductile materials such as steel and aluminium alloys
- moderately-high-strength, anisotropic, brittle materials such as advanced composites and timber
- materials of low tensile but high compressive strength, such as concrete and masonry
- reinforced concrete where concrete is combined with a ductile tensile material
- brittle materials, such as glass
The critical modes of failure of structures made from these materials tend to differ – for example, global and local instability play a very significant role in thin-walled structures of high-strength materials, while shear-induced delamination is a major concern only in wood and composites. So design approaches will be correspondingly different.
Overview and General Principles (5L)
- evolution of structural form, with case studies. Influence of available construction techniques. Bridge forms and materials economic in certain span ranges.
- requirements of a successful structure (considering collapse, buckling, deflection, cracking, imposed deformation, fatigue, fire, accident, corrosion etc, as well as construction method, cost and sustainability)
- relevant material properties (modulus, anisotropy, strength, toughness, cost, fabrication possibilities, energy content)
- risk, variability, and limit state design (brief introduction)
- Span-to-depth ratio and design.
- ‘load path’ approaches to simplified design, and the ‘lower bound’ theorem as a design tool, with limitations.
Design approaches for different materials
(in most cases, highlighting the important aspects of behaviour, covering the initial design of typical elements such as beams, columns and joints, and studying forms for complete structures).
Ductile Metals (primarily steel) (3L)
Masonry (mention) and Reinforced Concrete (3L)
Timber and Advanced Composites (3L)
Glass (2L)
Coursework
[Coursework Title]
Learning objectives:
Practical information:
- Sessions will take place in [Location], during week(s) [xxx].
- This activity [involves/doesn't involve] preliminary work ([estimated duration]).
Full Technical Report:
Students will have the option to submit a Full Technical Report.
Booklists
Please see the Booklist for Part IIA Courses for references for this module.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
D1
Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.
S1
The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.
S3
Understanding of the requirement for engineering activities to promote sustainable development.
S4
Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P4
Understanding use of technical literature and other information sources.
P6
Understanding of appropriate codes of practice and industry standards.
P7
Awareness of quality issues.
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 13/09/2018 14:40
Engineering Tripos Part IIB, 4M9: Surveying Field Course, 2017-18
Module Leader
Timing and Structure
Long Vacation between Part IIA and Part IIB. 2 - 15 July 2017 for 2017/18. and 1 - 14 July for 2018/19 -Assessment: 100% coursework
Prerequisites
Surveying experience, e.g. from IIA Engineering Area Activity or Fieldwork project.
Aims
The aims of the course are to:
- give students experience in surveying to a high accuracy, on a larger scale (and at greater altitude) than is possible near Cambridge.
Objectives
As specific objectives, by the end of the course students should be able to:
- plan the work for a complex setting-out exercise.
- know how to use high-accuracy and long-range surveying equipment.
- understand the role of GNSS in modern survey.
- know the calculation methods needed for the reduction of three-dimensional survey data.
- have experience in leading a survey team, and the planning of logistics.
- understand the effects of small errors in measurement, and how to minimise their effects.
- understand the need for long-term record keeping, and the information to be recorded.
Content
This module gives students experience in surveying to a high accuracy, on a larger scale than is possible near Cambridge. The exercise includes three-dimensional position-fixing and setting-out in a hilly location, and involves the use of first-order surveying instruments and precise computation.
Throughout the course, short lectures will be given as necessary to explain the theory needed for the practical work in hand. Topics covered include: geoids, ellipsoids, projections and grids; the theory and practice of GNSS, including the verification of Geoid models; reduction of angles and distances; least-squares adjustment.
The course has a capacity of 16. If over-subscribed, a ballot will be held in May, but with preference given to Civil Engineering students.
Coursework
The Course runs continuously over a two week period, and includes the following:
- Exercise planning and siting of control stations;
- Fixing of control stations using GNSS;
- High-accuracy traversing and resectioning;
- Fixing of heights by precise digital levelling and trigonometric heighting;
- Long-range distance measurement;
- Three-dimensional setting out;
- Adjustment, computation and record keeping.
The output of this course will be a set of numerical calculations leading to the setting-out of one or more points in the field. Since incorrect answers will be systematically eliminated from this result, assessment will be based on the course demonstrators' estimation of each student's ability to:
- Take accurate readings efficiently with the equipment provided;
- Make a neat and decipherable record of other students' readings;
- Produce accurate and well laid-out calculations;
- Check the calculations of others;
- Plan and manage the activities of the team;
- Generally contribute to the efficiency and productivity of the team.
Booklists
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
P7
Awareness of quality issues.
P8
Ability to apply engineering techniques taking account of a range of commercial and industrial constraints.
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US2
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 24/08/2017 15:52

