Undergraduate Teaching 2025-26

P7

P7

Not logged in. More information may be available... Login via Raven / direct.

Engineering Tripos Part IIB, 4D15: Water management under climate change, 2025-26

Leader

Dr E Borgomeo

Lecturer

Dr E Borgomeo

Timing and Structure

Lent term. 16 lectures ( Eight 2 hour sessions) + coursework. Assessment: 100% coursework.

Aims

The aims of the course are to:

  • Recognise the unsustainable feature of current water engineering practice
  • Understand the impacts of climate change on water resources, and approaches to adapt
  • The ability to evaluate recent practices and developments in managing all aspects of the water cycle, with an emphasis on developing countries

Objectives

As specific objectives, by the end of the course students should be able to:

  • Understand the limitations of conventional /traditional water supply and wastewater engineering systems in a sustainability context.
  • Appreciate the key features of managing the water cycle in a sustainable manner and the need to meet a variety of resilience criteria.
  • Recognise and critically assess the problems and solutions associated with managing water engineering projects in developing countries
  • Be familiar with key aspects of water management in an international development context
  • Recognise global issues in relation to the equitable management, distribution and disposal of water under growing environmental, social and political constraints.

Content

Leonardo Da Vinci remarked that ‘Water … is the cause of life or death, of increase or privation, nourishes at times and at others does the contrary …’. Today, water is at the centre of the sustainable development and climate action agendas. The most serious and high-profile impacts of climate change are being felt through water: floods, droughts, melting of ice and reduced snow cover, amongst others. Water is also a major sustainable development challenge: worldwide, 844 million people lack access to drinking water, and 2.3 billion do not have access to latrines or other basic sanitation facilities, mostly in low- and middle-income countries. High-income countries are also faced with water-related policy and engineering dilemmas. In the UK, the water sector is facing a major governance and investment crisis, and in the US, millions of people are drinking potentially unsafe tap water.

The module explores established and emerging practices for managing water under climate change. The module introduces key water issues around the world, including access to water supply and sanitation, flood and drought risk management, irrigation water service provision, and freshwater ecosystem degradation. Established and emerging engineering and policy practices for addressing these issues under climate change will be reviewed, including risk-based water resources planning, water allocation reform, and nature-based solutions. The interdependencies between water and other critical resources and sectors will be explored, with respect to greenhouse gas emissions, energy use, and food security. The module features discussions of present-day applications, with a focus on case studies from Africa, Asia, and Latin America and guest speakers from industry and policy.

 

Why Plan and Manage Water?

Climate change expresses itself through water. Nine out of ten ‘natural’ disasters are water-related. Water-related climate risks cascade through food, energy, urban and environmental systems. If we are to achieve climate and development goals, water must be at the core of adaptation strategies and development policy. This lecture describes some of the challenges and opportunities related to water, with examples from around the world. Problems of water management include too much, too little, too polluted, or too expensive water. The lecture also provides an overview of global progress towards Sustainable Development Goals 6 on ensuring availability and sustainable management of water and sanitation for all.

 

Approaches for Water Resources Planning and Management

Water resources planning and management activities are usually motivated by the realization that there are problems to solve and/or opportunities to obtain increased benefits by changing the management and use of water and related resources. This lecture presents water planning and management approaches, focusing on their technical, financial and economic, institutional and governance aspects. The different paradigms of water resources planning and management are discussed, including top-down planning, bottom-up planning, and Integrated Water Resources Management. The lecture evaluates the engineering paradigms and tools typically used to support planning and management and identifies the potential to update them in light of sustainable development and climate goals. The approaches and framework discussed in this lecture will serve the basis for the sub-sector deep-dives in the following lectures.

 

Are we going to run out of water?

Households, farms, factories, and ecosystems around the world are being forced to live with less water. Water crises are now amongst the top global risks, and many cities are already facing water shortages. This lecture unpacks the concept of water scarcity to explore its multiple dimensions and map its consequences at global and local levels. What are the main sources of water? And how do societies use it – and value it? Will we run out of water? Taking the world’s most water scarce region (Middle East and North Africa) as a case study, the lecture responds to these questions and evaluates alternative responses to water scarcity, with a focus on engineering options that manufacture new water through wastewater reuse and desalination.

 

Can clean energy help ease the water crisis?

How does the energy sector use water? What are the potential impacts of energy system transformation on water supplies? And how much energy does the water sector utilize? This lecture explores the ‘nexus’ between energy and water, examining both water for energy and energy for water, and presenting options for integrated energy and water systems planning. Taking the case study of a water utility in Brazil, the lecture discusses pathways to reduce energy consumption in the water sector.

 

Can we grow more food with less water?

Sustainable food production will not happen if water is not managed properly. Agriculture accounts for 70 percent of global freshwater withdrawals, and remains a major source of water pollution. Against this backdrop, engineers and policy-makers around the world often promote investments to grow more ‘crop per drop’, that is, more food with less water. This lecture explores the opportunities of growing more food with less water, and reveals some of the linkages between food and water policy that engineers need to be aware of when seeking to maximize efficiency in the water sector. Taking the case study of solar-power irrigation systems in India, the lecture discusses the complexities of integrated water-food-energy policy.

 

Working with nature: can ecosystems-based approaches help achieve water security?

Engineers around the world increasingly work with natural processes to reduce the impacts of floods and droughts, or to improve water quality. This lecture describes multiple types of nature-based solutions, and their benefits in terms of water-related outcomes and broader environmental outcomes. Taking the case study of natural flood management in the UK, the lecture discusses the approaches for working with nature to improve water security.

 

Sharing water, sharing problems?

As water scarcity increases around the world, the spectre of ‘water wars’ is often evoked by the media and by politicians. While water is indeed a source of tension between and within countries, it is very rarely a direct cause of war or conflict. This lecture reviews the complexities of managing water across boundaries and explores the evidence that helps dispel the myths of water wars. Two case studies from river basins in Africa showcase the potential for water engineering to contribute to cooperative transboundary water management.

 

Putting it all together: project planning for climate adaptation in the water sector

The course introduced some of the water-related challenges and opportunities encountered around the world, and the tools that are being used to address them.  The final lecture combines messages from the previous lectures to draw some general lessons on good practices for climate adaptation in the water sector. The concepts of robustness and adaptive planning are introduced, and a framework for analysis and implementation of projects is evaluated with examples from projects from different parts of the world.

 

Coursework

Coursework Format

Due date

& marks

Coursework 1: Policy Brief on access to drinking water supply and sanitation

In this assignment, you will search for and handle water-related data and use this data to provide timely policy advice. The assignment gives you a chance to focus on perhaps one of the largest sustainable engineering challenges of our times not covered extensively in your degree: extending access to drinking water supply and sanitation.

You will learn to use data to craft policy recommendations: this is an approach routinely used by development banks, governments, NGOs, and other interest groups to define priorities for policy support and investment pipelines. Data-driven analysis is also widely used to do advocacy, and you could end up using results from this assignment to write a blog raising awareness about gaps in access to drinking water supply and sanitation in a country/geography of interest to you.

Learning objective:

  • To  develop the ability to seek new information and achieve a balanced critique of the existing literature through individual research of relevant details/topics NOT covered in the lecture programme
Individual Report
 anonymously marked

day during term, ex:

Thu week 4

[20/60]

Coursework 2: Water Strategy

“When everything is a priority, nothing is a priority.” Countries around the world are increasingly grappling with the consequences of failing to manage their water. However, governments and policymakers are often pulled in many different directions and often don’t have the fiscal space to pursue all policies and investments all at once. Against this backdrop, the development of national water strategies is an important tool to help policymakers identify national priorities for the water sector, sequence their policies/investments, assign responsibilities, and define metrics to track progress. In this assignment, you will review the national water strategy of a country (Jordan, Kenya, Uzbekistan) and provide your expert opinion.

Learning objective:

  • In this assignment, you will learn to read national water strategies, critically evaluate their structure and content, and make recommendations for solutions to address one specific priority area identified in the strategy (e.g., expanding irrigation, increasing access to water supply and sanitation, strengthening flood risk management, transboundary water management, inclusion in water management). In turn, this will help you develop the ability to critically evaluate the role of water engineering within broader national development agendas.  

Individual Report

anonymously marked

  Wed week 9

[40/60]

 

Booklists

Loucks, D. P., & Van Beek, E. (2017). Water resource systems planning and management: An introduction to methods, models, and applications. Springer

World Bank. (2017). Beyond Scarcity: Water Security in the Middle East and North Africa. The World Bank.

 

 

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S3

Understanding of the requirement for engineering activities to promote sustainable development.

S4

Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P6

Understanding of appropriate codes of practice and industry standards.

P7

Awareness of quality issues.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

 
Last modified: 06/06/2025 12:38

Engineering Tripos Part IIB, 4D15: Management of Resilient Water Systems, 2021-22

Leader

Prof R Fenner

Lecturer

Prof R Fenner

Lab Leader

Prof R Fenner

Timing and Structure

Lent term. 16 lectures ( Eight 2 hour sessions) + coursework. Assessment: 100% coursework.

Aims

The aims of the course are to:

  • Recognise the unsustanable feature of current water engineering practice
  • Appreciate the key features of managing the water cycle in a sustainable manner and the need to meet a variety of resilience criteria.
  • Be aware of recent practices and developments in managing all aspects of the water cycle in both developed and developing countries

Objectives

As specific objectives, by the end of the course students should be able to:

  • Understand the limitations of conventional /traditional water supply and wastewater engineering systems in a sustainability context.
  • Appreciate the key features of managing the water cycle in a sustainable manner and the need to meet a variety of resilience criteria.
  • Recognise and critically assess the problems and solutions associated with managing water engineering projects.
  • Be familiar with key aspects of drainage and wastewater management planning including the merits of Natural Flood Management (NFM) , Sustainable Drainage Systems (SuDS) and strategies for asset selection based on adaptation planning techniques.
  • Be aware of the asset management of water infrastructure and how this is influenced by serviceability and levels of service criteria.
  • Recognise global issues in relation to the equitable management, distribution and disposal of water under growing environmental, social and political constraints.
  • Relect appropriate forms of water supply and sanitation for use in developing countries.

Content

The module will introduce and explore the   delivery of water services for water supply, wastewater treatment and flood control, identifying  unsustainable  aspects of current practice and reviewing  more resilient approaches.  The changing paradigms of water management towards fully water sensitive cities will be explained to understand how water fits within a wider urban metabolism.  The module will describe management strategies for water in both the urban environment and water in the rural environment, through adopting a flexible adaptation planning approach which avoids technical lock-in.  The interdependencies between water and other critical resources will be identified with respect to energy use and  recovery of nutrients;  the carbon budgets associated with the water sector will be assessed. Current progress towards achieving Sustainable Development Goal 6 (Water) will be discussed and the key constraints of delivering essential water services in the developing world will be highlighted

Characteristics and components of water systems (overview)

Potable water treatment and supply.  Wastewater collection and treatment.  Urban drainage and flood control. Changing paradigms of water management .  Unsustainable features of current water management.  Water as a hazard and an opportunity

Sustainable water engineering and resilience frameworks

5 themes for sustainable  water management ( less water consumed; local waste  treatment  and recycling, stormwater retained, climate resilient, minimum energy  footprint). System properties and levels of service considerations.   Engineering vs ecological resilience; technical vs management resilience.   Avoiding technical lock-in to large infrastructure solutions. The Safe and SuRe approach; anti-fragile  planning of water systems;  (threat based, mitigation focussed top down water management vs  consequence based, coping focussed bottom up management strategies) 

Water quality issues and resource recovery

Water quality parameters and regulatory requirements; water quality prediction and control;  simple river quality models.  Engineered systems for resource recovery and re-use

Water in the urban system

Urban water metabolisms; integrated operation of water systems (e.g.  rainwater harvesting) ; real time control. Pressure and leakage  management in Water Distribution systems. Urban Drainage Systems- purpose, types and historical development.  Rainfall and surface runoff. Urban Pollution Management of intermittent discharges at Combined Sewer Overflows.  Principles of Urban Flood Risk Management. Source control of stormwater and Design of Sustainable Drainage Systems (SuDS Manual)

Flood Risk Management using Adaptation Planning and Adaptive pathways

Concepts of Adaptive Planning ( e.g.  Thames barrier example). Methodological steps for developing adaptation pathways ( London Borough of Sutton Case Study) and appraisal  of multiple benefits in Blue Green Cities. Evaluating Blue-Green infrastructure using the  CIRIA B£St tool. Preparing Drainage and Wastewater Management Plans

Water in the rural system

Management of water resources, impacts of climate variability, catchment management. Principles of Natural Flood Management (NFM) and Integrated Catchment management (ICM);  international experience and practice.  Environmental benefits of land management, Upstream Thinking.

Role of water in water-energy-food/land nexus

Hydro-meteorological risks to critical infrastructure (including energy systems); water and energy interdependencies; groundwater implications of shale gas extraction;  strategies for a low carbon water industry, UKWIR framework for carbon accounting; energy from water (micro hydro, thermal heat recovery, anaerobic digestion of biomass etc), water for energy in a low carbon energy future; issues around water and food security.

Water in the developing world

Progress towards Sustainable Development Goal 6; global level of access to water services. Water related diseases.  Key features of Water Sanitation and Hygiene (WASH) programmes. Systems thinking in WASH.  Small community water supply systems. Low cost wastewater  treatment  (waste stabilisation ponds). On and off site sanitation including dry sanitation.

Coursework

Coursework Format

Due date

& marks

Coursework 1: Individual Research Report on a key water related topic

An open ended  investigation in further detail of one aspect of water engineering practice

Learning objective:

  • To  develop the ability to seek new information and achieve a balanced critique of the existing literature through individual research of relevant details/topics NOT covered in the lecture programme
Individual Report
 anonymously marked

day during term, ex:

Thu week 4

[30/60]

Coursework 2: Resilience assessment of one aspect of water engineering practice

A critique of  one aspect of  current water engineering practice (e.g supply, wastewater dispsoal, drainage, development) against resilience criteria and propose key areas for change

Learning objective:

  • To apply a resilience and sustainable mindset to the delivery of water services

Individual Report

anonymously marked

  Wed week 9

[30/60]

 

Booklists

 

1.      Ainger C., Fenner R.A. (2016)   Sustainable  Water   ICE Publishing   ISBN 978-0-7277-5773-9

 

2.      Radhakrishnan M., Lowe R., Ashley R.M., Gersonius  B., Arnbkerg-Nielsen K., Pathirana A., Zevenbergen C (2019) Flexible adaptation planning process for urban adaptation in Melbourne, Australia Proceedings of Institution of Civil Engineers – Engineering Sustainability Volume 172 Issue 7 September 2019 pp 393-403

 

3.      Ashley R.M. Gersonius B., Horton B (2020) Managing flooding - From a problem to an opportunity . Royal Society Philosophical  Transactions A  Volume 378 Issue 2168 Paper 0214 

 

4.      David Butler, Sarah Ward, Chris Sweetapple, Maryam Astaraie-Imani, Kegong Diao,Raziyeh Farmani & Guangtao Fu   (2016) Reliable, resilient and sustainable water management: the Safe & SuRe approach  Global Challenges 2016 (John Wiley)  

 

5.      Kate Neely (ed) (2019) Systems thinking in WASH  Practical Action Publishing ISBN-078-1-78853-026-2

 

6.      Butler D., Digman C., Makropoulos C., Davies J.W. ( 2018) Urban Drainage 4th edition.  CRC Press ISBN 978-1-4987-5058-5

 

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S3

Understanding of the requirement for engineering activities to promote sustainable development.

S4

Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P6

Understanding of appropriate codes of practice and industry standards.

P7

Awareness of quality issues.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

 
Last modified: 20/05/2021 08:32

Engineering Tripos Part IIB, 4D15: Sustainable Water Engineering, 2020-21

Leader

Prof R Fenner

Lecturer

Prof R Fenner

Lab Leader

Prof R Fenner

Timing and Structure

Lent term. 16 lectures ( Eight 2 hour sessions) + coursework. Assessment: 100% coursework.

Aims

The aims of the course are to:

  • Recognise the unsustanable feature of current water engineering practice
  • Appreciate the key features of managing the water cycle in a sustainable manner and the need to meet a variety of resilience criteria.
  • Be aware of recent practices and developments in managing all aspects of the water cycle in both developed and developing countries

Objectives

As specific objectives, by the end of the course students should be able to:

  • Understand the limitations of conventional /traditional water supply and wastewater engineering systems in a sustainability context.
  • Appreciate the key features of managing the water cycle in a sustainable manner and the need to meet a variety of resilience criteria.
  • Recognise and critically assess the problems and solutions associated with managing water engineering projects.
  • Be familiar with key aspects of drainage and wastewater management planning including the merits of Natural Flood Management (NFM) , Sustainable Drainage Systems (SuDS) and strategies for asset selection based on adaptation planning techniques.
  • Be aware of the asset management of water infrastructure and how this is influenced by serviceability and levels of service criteria.
  • Recognise global issues in relation to the equitable management, distribution and disposal of water under growing environmental, social and political constraints.
  • Relect appropriate forms of water supply and sanitation for use in developing countries.

Content

The module will introduce and explore the   delivery of water services for water supply, wastewater treatment and flood control, identifying  unsustainable  aspects of current practice and reviewing  more resilient approaches.  The changing paradigms of water management towards fully water sensitive cities will be explained to understand how water fits within a wider urban metabolism.  The module will describe management strategies for water in both the urban environment and water in the rural environment, through adopting a flexible adaptation planning approach which avoids technical lock-in.  The interdependencies between water and other critical resources will be identified with respect to energy use and  recovery of nutrients;  the carbon budgets associated with the water sector will be assessed. Current progress towards achieving Sustainable Development Goal 6 (Water) will be discussed and the key constraints of delivering essential water services in the developing world will be highlighted

Characteristics and components of water systems (overview)

Potable water treatment and supply.  Wastewater collection and treatment.  Urban drainage and flood control. Changing paradigms of water management .  Unsustainable features of current water management.  Water as a hazard and an opportunity

Sustainable water engineering and resilience frameworks

5 themes for sustainable  water management ( less water consumed; local waste  treatment  and recycling, stormwater retained, climate resilient, minimum energy  footprint). System properties and levels of service considerations.   Engineering vs ecological resilience; technical vs management resilience.   Avoiding technical lock-in to large infrastructure solutions. The Safe and SuRe approach; anti-fragile  planning of water systems;  (threat based, mitigation focussed top down water management vs  consequence based, coping focussed bottom up management strategies) 

Water quality issues and resource recovery

Water quality parameters and regulatory requirements; water quality prediction and control;  simple river quality models.  Engineered systems for resource recovery and re-use

Water in the urban system

Urban water metabolisms; integrated operation of water systems (e.g.  rainwater harvesting) ; real time control. Pressure and leakage  management in Water Distribution systems. Urban Drainage Systems- purpose, types and historical development.  Rainfall and surface runoff. Urban Pollution Management of intermittent discharges at Combined Sewer Overflows.  Principles of Urban Flood Risk Management. Source control of stormwater and Design of Sustainable Drainage Systems (SuDS Manual)

Flood Risk Management using Adaptation Planning and Adaptive pathways

Concepts of Adaptive Planning ( e.g.  Thames barrier example). Methodological steps for developing adaptation pathways ( London Borough of Sutton Case Study) and appraisal  of multiple benefits in Blue Green Cities. Evaluating Blue-Green infrastructure using the  CIRIA B£St tool. Preparing Drainage and Wastewater Management Plans

Water in the rural system

Management of water resources, impacts of climate variability, catchment management. Principles of Natural Flood Management (NFM) and Integrated Catchment management (ICM);  international experience and practice.  Environmental benefits of land management, Upstream Thinking.

Role of water in water-energy-food/land nexus

Hydro-meteorological risks to critical infrastructure (including energy systems); water and energy interdependencies; groundwater implications of shale gas extraction;  strategies for a low carbon water industry, UKWIR framework for carbon accounting; energy from water (micro hydro, thermal heat recovery, anaerobic digestion of biomass etc), water for energy in a low carbon energy future; issues around water and food security.

Water in the developing world

Progress towards Sustainable Development Goal 6; global level of access to water services. Water related diseases.  Key features of Water Sanitation and Hygiene (WASH) programmes. Systems thinking in WASH.  Small community water supply systems. Low cost wastewater  treatment  (waste stabilisation ponds). On and off site sanitation including dry sanitation.

Coursework

Coursework Format

Due date

& marks

Coursework 1: Individual Research Report on a key water related topic

An open ended  investigation in further detail of one aspect of water engineering practice

Learning objective:

  • To  develop the ability to seek new information and achieve a balanced critique of the existing literature through individual research of relevant details/topics NOT covered in the lecture programme
Individual Report
 anonymously marked

day during term, ex:

Thu week 4

[30/60]

Coursework 2: Resilience assessment of one aspect of water engineering practice

A critique of  one aspect of  current water engineering practice (e.g supply, wastewater dispsoal, drainage, development) against resilience criteria and propose key areas for change

Learning objective:

  • To apply a resilience and sustainable mindset to the delivery of water services

Individual Report

anonymously marked

  Wed week 9

[30/60]

 

Booklists

 

1.      Ainger C., Fenner R.A. (2016)   Sustainable  Water   ICE Publishing   ISBN 978-0-7277-5773-9

 

2.      Radhakrishnan M., Lowe R., Ashley R.M., Gersonius  B., Arnbkerg-Nielsen K., Pathirana A., Zevenbergen C (2019) Flexible adaptation planning process for urban adaptation in Melbourne, Australia Proceedings of Institution of Civil Engineers – Engineering Sustainability Volume 172 Issue 7 September 2019 pp 393-403

 

3.      Ashley R.M. Gersonius B., Horton B (2020) Managing flooding - From a problem to an opportunity . Royal Society Philosophical  Transactions A  Volume 378 Issue 2168 Paper 0214 

 

4.      David Butler, Sarah Ward, Chris Sweetapple, Maryam Astaraie-Imani, Kegong Diao,Raziyeh Farmani & Guangtao Fu   (2016) Reliable, resilient and sustainable water management: the Safe & SuRe approach  Global Challenges 2016 (John Wiley)  

 

5.      Kate Neely (ed) (2019) Systems thinking in WASH  Practical Action Publishing ISBN-078-1-78853-026-2

 

6.      Butler D., Digman C., Makropoulos C., Davies J.W. ( 2018) Urban Drainage 4th edition.  CRC Press ISBN 978-1-4987-5058-5

 

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S3

Understanding of the requirement for engineering activities to promote sustainable development.

S4

Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P6

Understanding of appropriate codes of practice and industry standards.

P7

Awareness of quality issues.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

 
Last modified: 02/10/2020 10:27

Engineering Tripos Part IIB, 4D15: Management of Resilient Water Systems, 2025-26

Leader

Prof R Fenner

Lecturer

Prof R Fenner

Lab Leader

Prof R Fenner

Timing and Structure

Lent term. 16 lectures ( Eight 2 hour sessions) + coursework. Assessment: 100% coursework.

Aims

The aims of the course are to:

  • Recognise the unsustanable feature of current water engineering practice
  • Appreciate the key features of managing the water cycle in a sustainable manner and the need to meet a variety of resilience criteria.
  • Be aware of recent practices and developments in managing all aspects of the water cycle in both developed and developing countries

Objectives

As specific objectives, by the end of the course students should be able to:

  • Understand the limitations of conventional /traditional water supply and wastewater engineering systems in a sustainability context.
  • Appreciate the key features of managing the water cycle in a sustainable manner and the need to meet a variety of resilience criteria.
  • Recognise and critically assess the problems and solutions associated with managing water engineering projects.
  • Be familiar with key aspects of drainage and wastewater management planning including the merits of Natural Flood Management (NFM) , Sustainable Drainage Systems (SuDS) and strategies for asset selection based on adaptation planning techniques.
  • Be aware of the asset management of water infrastructure and how this is influenced by serviceability and levels of service criteria.
  • Recognise global issues in relation to the equitable management, distribution and disposal of water under growing environmental, social and political constraints.
  • Relect appropriate forms of water supply and sanitation for use in developing countries.

Content

The module will introduce and explore the   delivery of water services for water supply, wastewater treatment and flood control, identifying  unsustainable  aspects of current practice and reviewing  more resilient approaches.  The changing paradigms of water management towards fully water sensitive cities will be explained to understand how water fits within a wider urban metabolism.  The module will describe management strategies for water in both the urban environment and water in the rural environment, through adopting a flexible adaptation planning approach which avoids technical lock-in.  The interdependencies between water and other critical resources will be identified with respect to energy use and  recovery of nutrients;  the carbon budgets associated with the water sector will be assessed. Current progress towards achieving Sustainable Development Goal 6 (Water) will be discussed and the key constraints of delivering essential water services in the developing world will be highlighted

Characteristics and components of water systems (overview)

Potable water treatment and supply.  Wastewater collection and treatment.  Urban drainage and flood control. Changing paradigms of water management .  Unsustainable features of current water management.  Water as a hazard and an opportunity

Sustainable water engineering and resilience frameworks

5 themes for sustainable  water management ( less water consumed; local waste  treatment  and recycling, stormwater retained, climate resilient, minimum energy  footprint). System properties and levels of service considerations.   Engineering vs ecological resilience; technical vs management resilience.   Avoiding technical lock-in to large infrastructure solutions. The Safe and SuRe approach; anti-fragile  planning of water systems;  (threat based, mitigation focussed top down water management vs  consequence based, coping focussed bottom up management strategies) 

Water quality issues and resource recovery

Water quality parameters and regulatory requirements; water quality prediction and control;  simple river quality models.  Engineered systems for resource recovery and re-use

Water in the urban system

Urban water metabolisms; integrated operation of water systems (e.g.  rainwater harvesting) ; real time control. Pressure and leakage  management in Water Distribution systems. Urban Drainage Systems- purpose, types and historical development.  Rainfall and surface runoff. Urban Pollution Management of intermittent discharges at Combined Sewer Overflows.  Principles of Urban Flood Risk Management. Source control of stormwater and Design of Sustainable Drainage Systems (SuDS Manual)

Flood Risk Management using Adaptation Planning and Adaptive pathways

Concepts of Adaptive Planning ( e.g.  Thames barrier example). Methodological steps for developing adaptation pathways ( London Borough of Sutton Case Study) and appraisal  of multiple benefits in Blue Green Cities. Evaluating Blue-Green infrastructure using the  CIRIA B£St tool. Preparing Drainage and Wastewater Management Plans

Water in the rural system

Management of water resources, impacts of climate variability, catchment management. Principles of Natural Flood Management (NFM) and Integrated Catchment management (ICM);  international experience and practice.  Environmental benefits of land management, Upstream Thinking.

Role of water in water-energy-food/land nexus

Hydro-meteorological risks to critical infrastructure (including energy systems); water and energy interdependencies; groundwater implications of shale gas extraction;  strategies for a low carbon water industry, UKWIR framework for carbon accounting; energy from water (micro hydro, thermal heat recovery, anaerobic digestion of biomass etc), water for energy in a low carbon energy future; issues around water and food security.

Water in the developing world

Progress towards Sustainable Development Goal 6; global level of access to water services. Water related diseases.  Key features of Water Sanitation and Hygiene (WASH) programmes. Systems thinking in WASH.  Small community water supply systems. Low cost wastewater  treatment  (waste stabilisation ponds). On and off site sanitation including dry sanitation.

Coursework

Coursework Format

Due date

& marks

Coursework 1: Individual Research Report on a key water related topic

An open ended  investigation in further detail of one aspect of water engineering practice

Learning objective:

  • To  develop the ability to seek new information and achieve a balanced critique of the existing literature through individual research of relevant details/topics NOT covered in the lecture programme
Individual Report
 anonymously marked

day during term, ex:

Thu week 4

[30/60]

Coursework 2: Resilience assessment of one aspect of water engineering practice

A critique of  one aspect of  current water engineering practice (e.g supply, wastewater dispsoal, drainage, development) against resilience criteria and propose key areas for change

Learning objective:

  • To apply a resilience and sustainable mindset to the delivery of water services

Individual Report

anonymously marked

  Wed week 9

[30/60]

 

Booklists

 

1.      Ainger C., Fenner R.A. (2016)   Sustainable  Water   ICE Publishing   ISBN 978-0-7277-5773-9

 

2.      Radhakrishnan M., Lowe R., Ashley R.M., Gersonius  B., Arnbkerg-Nielsen K., Pathirana A., Zevenbergen C (2019) Flexible adaptation planning process for urban adaptation in Melbourne, Australia Proceedings of Institution of Civil Engineers – Engineering Sustainability Volume 172 Issue 7 September 2019 pp 393-403

 

3.      Ashley R.M. Gersonius B., Horton B (2020) Managing flooding - From a problem to an opportunity . Royal Society Philosophical  Transactions A  Volume 378 Issue 2168 Paper 0214 

 

4.      David Butler, Sarah Ward, Chris Sweetapple, Maryam Astaraie-Imani, Kegong Diao,Raziyeh Farmani & Guangtao Fu   (2016) Reliable, resilient and sustainable water management: the Safe & SuRe approach  Global Challenges 2016 (John Wiley)  

 

5.      Kate Neely (ed) (2019) Systems thinking in WASH  Practical Action Publishing ISBN-078-1-78853-026-2

 

6.      Butler D., Digman C., Makropoulos C., Davies J.W. ( 2018) Urban Drainage 4th edition.  CRC Press ISBN 978-1-4987-5058-5

 

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S3

Understanding of the requirement for engineering activities to promote sustainable development.

S4

Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P6

Understanding of appropriate codes of practice and industry standards.

P7

Awareness of quality issues.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

 
Last modified: 04/06/2025 13:28

Engineering Tripos Part IIA, 3G5: Biomaterials, 2018-19

Module Leader

Dr A Markaki

Lecturers

Dr M Birch, Ms C Henderson, Dr A Markaki

lab Leader

Dr S Huang

Timing and Structure

Michaelmas term. 16 lectures.

Aims

The aims of the course are to:

  • Develop an understanding of the materials issues associated with man-made and naturally-derived materials for medical purposes. Specific case studies will be considered in addition to the general framework.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Identify the mechanism by which medical devices and implants come to market.
  • Know about the classes of materials used in medical materials and the associated reasons.
  • Understand the requirements for materials used in the body and assess potential for implant-body interactions.
  • Perform quantitative evaluations of drug delivery.
  • Identify appropriate implants and tissue engineering approaches for tissue and body function replacements.
  • Understand bioethics and safety regulations associated with medical devices and implants.

Content

Introductory concepts (1L)

  • History of biomaterials
  • Five therapies for missing organs
  • Classes of Biomaterials overview

 

Biomaterials as integral parts of medical devices (1L)

Biocompatibility; sterilisation techniques (1L)

  • Sterilisation techniques
  • Choosing a technique

Sector analysis and regulatory affairs (1.5L)

  • Market analysis
  • Role of standards
  • EU and US approval process

Advanced medical devices and biomaterials of the future (0.5L, non-examinable)

Orthopaedic Implants - Hip Replacement (2L)

  • Types of implant fixation
  • Materials in hip implants
  • Surface engineering approaches
  • In vivo loading of hip joint

Cardiovascular Stents (2L)

  • Balloon expandable & self expanding stents
  • Materials in ​stents
  • Stent mechanics and design

Synthetic polymers for tissue engineering applications (2L)

  • Introduction to polymers
  • Synthetic biodegradable polymers 

Host response to implants (1L)

  • Wound repair
  • Innate immunity
  • The biological response to biomaterials

Using cells in tissue engineering (1L)

  • What happens when biomaterials fail
  • Cell therapy
  • Combining cells with scaffolds
  • Working with biology - implant integration and vascularisation

Naturally derived polymers for tissue engineering application (1L)

Drug delivery and diffusion (2L)

  • Drug delivery systems
  • Diffusion controlled systems in drug delivery

Further notes

Examples papers

Example papers are available on Moodle.

Coursework

Full Technical Report:

Students will not have the option to submit a Full Technical Report.

Booklists

Biomedical Engineering: Bridging Medicine and Technology by W. Mark Saltzman

Biomaterial Science: An Introduction to Materials in Medicine. Edited by Ratner et al.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D1

Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S4

Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.

S5

Understanding of the need for a high level of professional and ethical conduct in engineering.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P7

Awareness of quality issues.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 23/07/2018 10:40

Engineering Tripos Part IIA, 3G5: Biomaterials, 2017-18

Module Leader

Dr S Huang

Lecturers

Dr S Huang, Dr M Birch, Dr A Markaki, Dr R Daly

lab Leader

Dr M Oyen

Timing and Structure

Michaelmas term. 16 lectures.

Aims

The aims of the course are to:

  • Develop an understanding of the materials issues associated with man-made and naturally-derived materials for medical purposes. Specific case studies will be considered in addition to the general framework.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Identify the mechanism by which medical devices and implants come to market.
  • Know about the classes of materials used in medical materials and the associated reasons.
  • Understand the requirements for materials used in the body and assess potential for implant-body interactions.
  • Perform quantitative evaluations of drug delivery.
  • Identify appropriate implants and tissue engineering approaches for tissue and body function replacements.
  • Understand bioethics and safety regulations associated with medical devices and implants.

Content

Introductory concepts (1L)

  • History of biomaterials
  • Five therapies for missing organs
  • Classes of Biomaterials overview

 

Synthetic polymers for tissue engineering applications (2L)

  • Introduction to polymers
  • Synthetic biodegradable polymers 

Host response to implants (1L)

  • Wound repair
  • Innate immunity
  • The biological response to biomaterials

Using cells in tissue engineering (1L)

  • What happens when biomaterials fail
  • Cell therapy
  • Combining cells with scaffolds
  • Working with biology - implant integration and vascularisation

Naturally derived polymers for tissue engineering application (1L)

Drug delivery and diffusion (2L)

  • Drug delivery systems
  • Diffusion controlled systems in drug delivery

Orthopaedic Implants - Hip Replacement (2L)

  • Types of implant fixation
  • Materials in hip implants
  • Surface engineering approaches
  • In vivo loading of hip joint

Cardiovascular Stents (2L)

  • Balloon expandable & self expanding stents
  • Materials in ​stents
  • Stent mechanics and design

Biomaterials as integral parts of medical devices (1L)

Biocompatibility; sterilisation techniques (1L)

  • Sterilisation techniques
  • Choosing a technique

Sector analysis and regulatory affairs (1.5L)

  • Market analysis
  • Role of standards
  • EU and US approval process

Advanced medical devices and biomaterials of the future (0.5L, non-examinable)

Further notes

Examples papers

Example papers are available on Moodle.

Coursework

Full Technical Report:

Students will not have the option to submit a Full Technical Report.

Booklists

Biomedical Engineering: Bridging Medicine and Technology by W. Mark Saltzman

Biomaterial Science: An Introduction to Materials in Medicine. Edited by Ratner et al.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D1

Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S4

Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.

S5

Understanding of the need for a high level of professional and ethical conduct in engineering.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P7

Awareness of quality issues.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 18/09/2017 09:31

Engineering Tripos Part IIA, 3E10: Operations Management for Engineers, 2019-20

Leader

Dr F Erhun-Oguz

Lecturer

Dr F Erhun-Oguz

Lab Leader

Dr F Erhun-Oguz

Timing and Structure

Lent term. 16 lectures and 4 examples classes.

Aims

The aims of the course are to:

  • Introduce Operations Management to students coming specifically from an engineering background.
  • Give a foundation course for any engineering student who aims to join large manufacturing firms or go into management consultancy.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Understand the role, objectives and activities of Operations Management
  • Be familiar with the main Operations Management concepts and techniques, which they can apply in practice.

Content

Operations management is concerned with the processes by which organisations deliver goods and services. The course will be covering the basic concepts and techniques used in managing modern manufacturing and service operations, from the composition of a manufacturing system, to planning and scheduling at factory level, and the coordination of supplier networks

  • Process Fundamentals, Types of Manufacturing and Service Operations.
  • Inventory Management.
  • Forecasting.
  • Machine-level Scheduling and Assembly Line Balancing.
  • Factory-level Scheduling and MRP Systems.
  • Toyota Production System and Lean Thinking.
  • Quality Management, Six Sigma and Project Management
  • Supply Chain Management

Further notes

TEACHING METHODS

A mixture of:

  • Interactive lecture sessions
  • Group discussion of case studies
  • In-class exercises

Coursework

To be announced in lectures.

There is no Full Technical Report (FTR) associated with this module.

[Coursework Title]

Learning objectives

  •  
  •  
  •  

Practical information:

  • Sessions will take place in [Location], during week(s) [xxx].
  • This activity [involves/doesn't involve] preliminary work ([estimated duration]).
  •  

Full Technical Report:

There is no Full Technical Report (FTR) associated with this module.

Booklists

Please see the Booklist for Part IIA Courses for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D3

Identify and manage cost drivers.

D5

Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S2

Extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately to strategic and tactical issues.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P7

Awareness of quality issues.

P8

Ability to apply engineering techniques taking account of a range of commercial and industrial constraints.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

 
Last modified: 15/05/2019 09:30

Engineering Tripos Part IIA, 3E10: Operations Management for Engineers, 2017-18

Leader

Dr F Erhun-Oguz

Lecturer

Lab Leader

Dr R McKenzie

Timing and Structure

Lent term. 16 lectures and 4 examples classes.

Aims

The aims of the course are to:

  • Introduce Operations Management to students coming specifically from an engineering background.
  • Give a foundation course for any engineering student who aims to join large manufacturing firms or go into management consultancy.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Understand the role, objectives and activities of Operations Management
  • Be familiar with the main Operations Management concepts and techniques, which they can apply in practice.

Content

Operations management is concerned with the processes by which organisations deliver goods and services. The course will be covering the basic concepts and techniques used in managing modern manufacturing and service operations, from the composition of a manufacturing system, to planning and scheduling at factory level, and the coordination of supplier networks

  • Process Fundamentals, Types of Manufacturing and Service Operations.
  • Inventory Management.
  • Forecasting.
  • Machine-level Scheduling and Assembly Line Balancing.
  • Factory-level Scheduling and MRP Systems.
  • Toyota Production System and Lean Thinking.
  • Quality Management, Six Sigma and Project Management
  • Supply Chain Management

Further notes

TEACHING METHODS

A mixture of:

  • Interactive lecture sessions
  • Group discussion of case studies
  • In-class exercises

Coursework

To be announced in lectures.

There is no Full Technical Report (FTR) associated with this module.

[Coursework Title]

Learning objectives

  •  
  •  
  •  

Practical information:

  • Sessions will take place in [Location], during week(s) [xxx].
  • This activity [involves/doesn't involve] preliminary work ([estimated duration]).
  •  

Full Technical Report:

Students [will/won't] have the option to submit a Full Technical Report.

Booklists

Please see the Booklist for Part IIA Courses for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D3

Identify and manage cost drivers.

D5

Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S2

Extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately to strategic and tactical issues.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P7

Awareness of quality issues.

P8

Ability to apply engineering techniques taking account of a range of commercial and industrial constraints.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

 
Last modified: 03/08/2017 15:38

Engineering Tripos Part IIA, 3E10: Operations Management for Engineers, 2023-24

Leader

Prof F Erhun

Lecturer

Prof Feryal Erhun

Timing and Structure

Lent term. 16 lectures and 4 examples classes.

Aims

The aims of the course are to:

  • Introduce Operations Management to students coming specifically from an engineering background.
  • Give a foundation course for any engineering student who aims to join large manufacturing firms or go into management consultancy.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Understand the role, objectives and activities of Operations Management
  • Be familiar with the main Operations Management concepts and techniques, which they can apply in practice.

Content

Operations management is concerned with the processes by which organisations deliver goods and services. The course will be covering the basic concepts and techniques used in managing modern manufacturing and service operations, from the composition of a manufacturing system, to planning and scheduling at factory level, and the coordination of supplier networks

  • Process Fundamentals, Types of Manufacturing and Service Operations
  • Capacity Management
  • Inventory Management
  • Forecasting
  • Machine-level Scheduling and Assembly Line Balancing
  • Factory-level Scheduling and MRP Systems
  • Toyota Production System, Lean Thinking and Six Sigma
  • Supply Chain Management

Further notes

TEACHING METHODS

A mixture of:

  • Interactive lecture sessions
  • In-class exercises

Coursework

To be announced in lectures.

There is no Full Technical Report (FTR) associated with this module.

 

Booklists

Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D3

Identify and manage cost drivers.

D5

Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S2

Extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately to strategic and tactical issues.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P7

Awareness of quality issues.

P8

Ability to apply engineering techniques taking account of a range of commercial and industrial constraints.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

 
Last modified: 30/05/2023 15:21

Engineering Tripos Part IIA, 3E10: Operations Management for Engineers, 2021-22

Leader

Dr T Masood

Lecturer

Dr T Masood

Lab Leader

Timing and Structure

Lent term. 16 lectures and 4 examples classes.

Aims

The aims of the course are to:

  • Introduce Operations Management to students coming specifically from an engineering background.
  • Give a foundation course for any engineering student who aims to join large manufacturing firms or go into management consultancy.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Understand the role, objectives and activities of Operations Management
  • Be familiar with the main Operations Management concepts and techniques, which they can apply in practice.

Content

Operations management is concerned with the processes by which organisations deliver goods and services. The course will be covering the basic concepts and techniques used in managing modern manufacturing and service operations, from the composition of a manufacturing system, to planning and scheduling at factory level, and the coordination of supplier networks

  • Process Fundamentals, Types of Manufacturing and Service Operations.
  • Inventory Management.
  • Forecasting.
  • Machine-level Scheduling and Assembly Line Balancing.
  • Factory-level Scheduling and MRP Systems.
  • Toyota Production System and Lean Thinking.
  • Quality Management, Six Sigma and Project Management
  • Supply Chain Management

Further notes

TEACHING METHODS

A mixture of:

  • Interactive lecture sessions
  • Group discussion of case studies
  • In-class exercises

Coursework

To be announced in lectures.

There is no Full Technical Report (FTR) associated with this module.

[Coursework Title]

Learning objectives

  •  
  •  
  •  

Practical information:

  • Sessions will take place in [Location], during week(s) [xxx].
  • This activity [involves/doesn't involve] preliminary work ([estimated duration]).
  •  

Full Technical Report:

There is no Full Technical Report (FTR) associated with this module.

Booklists

Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D3

Identify and manage cost drivers.

D5

Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S2

Extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately to strategic and tactical issues.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P7

Awareness of quality issues.

P8

Ability to apply engineering techniques taking account of a range of commercial and industrial constraints.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

 
Last modified: 01/12/2021 08:16

Pages

Subscribe to P7