Undergraduate Teaching 2025-26

US4

US4

Not logged in. More information may be available... Login via Raven / direct.

Engineering Tripos Part IIB, 4D13: Architectural Engineering, 2024-25

Module Leader (Engineering)

Prof S Fitzgerald

Lecturer

Prof S Fitzgerald and Dr M Ramage

Timing and Structure

Michaelmas term. 8 afternoons. Assessment: 100% coursework

Prerequisites

[3D3, 3D4, 3D8] useful

Aims

The aims of the course are to:

  • Teach architects and engineers to work together to solve design problems at the intersection of their disciplines.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Operate and communicate effectively in multidisciplinary design teams of architects and engineers, and present solutions to and derive useful, actionable feedback from various stakeholders (e.g. client, peers and co-professionals, constructors)
  • By reflecting on and through improved understanding of the collaborative design process, apply appropriate management strategies to design innovative efficient solutions to a client’s design brief
  • Appreciate the principles of architectural engineering through investigation, critical appraisal and selection of appropriate structural systems, materials, and construction techniques relevant to architectural and engineering design , and assessing the e
  • Demonstrate proficiency in specialized design subject matter which integrates with the team’s design solution, such as timber engineering, resource efficient design, designing for well-being, reciprocity of context and design.

Content

This module is run in conjunction with the Department of Architecture. CUED students who elect to do this module will work together one full afternoon per week with final year students from the Department of Architecture. The module involves an architectural engineering design exercise, with students working in mixed groups of architects and engineers.

The course focuses on integrating architecture and engineering to produce new designs.  Developing an understanding of the challenges and opportunities presented by multidisciplinary teamwork is integral to the course. 

Projects vary considerably from year to year. The Michaelmas 2019 project was to design a tall timber building over an underground station in London. This year’s project will be quite different.

The teaching format will be unconventional. Each afternoon will usually begin with a short talk by one of the lecturers or by an external speaker. For the remaining class time, students will work in groups on developing their design project(s) with regular ‘studio’ style consultation sessions with teaching staff and/or guest speakers to provide feedback on design development. Depending on the covid19 restrictions prevailing at the time of the course, some, or perhaps all, of this ‘class’ time may be virtual. This presents us with some new challenges, but we hope that in overcoming them we may also find some new opportunities. This year’s project has been carefully designed with these challenges in mind.

Towards the end of the course each group will make a presentation of its design to a review panel of architectural, structural, environmental experts.

Course Schedule

All classes will be 2.00-5.00pm on Thursdays.

 

Week 1: Thursday 8th October

  • Course introduction
  • Groups will be allocated and teams will be built

 

Weeks 2-5: Thursday 15th October – Thursday 5th November

  • Talks on key skills or elements of the design process relevant to the project at hand.
  • Group work and ‘studio’ time with teaching staff supporting project development.

 

Week 6: Thursday 12th November

  • Presentations and design review
  • Groups will present their designs to a panel of expert reviewers and receive feedback

 

Week 7-8: Thursday 19th November - Thursday 26th November

  • Talks on key skills or elements of the design process relevant to the project at hand.
  • Group work and ‘studio’ time with teaching staff to refine designs in response to reviewer feedback and progress to production of the final group design submission.

Coursework

All coursework submissions are to be uploaded to relevant folder on the course moodle page. Detailed instructions will be provided on the course moodle page. There will be no hardcopy submissions.

Coursework Format

Due date

& marks

Group Presentation and Design Review

Each group will present their design proposal though a prepared video of 3-4 minutes, then get feedback from the jury

Group

Presentation

non-anonymously marked

(Names of all students in the group should be clearly listed on the video)

2 pm, 12/11/2020

Thu week 6

(20%)

Group Design Submission

Each group will submit a digital copy of their design, including fabrication drawings, and a short video (refinement of the previous) detailing the project and design process.

Group

Design Submission

non-anonymously marked

 5 pm, 28/11/2020

(20%)

 

Individual Report

A short report developing and extending one or more aspects of the group design (40%).

The report should also include a critical reflection on the collaborative, multi-disciplinary nature of the design process, and how, given your experience, you might improve the design process in the future (20%).

Individual Report

non-anonymously marked

4 pm, 18/01/2021

(60%)

This report is to be submitted individually by every student.

 

 

 

 

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D1

Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.

D2

Understand customer and user needs and the importance of considerations such as aesthetics.

D4

Ability to generate an innovative design for products, systems, components or processes to fulfil new needs.

D5

Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal.

D6

Manage the design process and evaluate outcomes.

S3

Understanding of the requirement for engineering activities to promote sustainable development.

S4

Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P4

Understanding use of technical literature and other information sources.

P6

Understanding of appropriate codes of practice and industry standards.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 31/05/2024 10:04

Engineering Tripos Part IIB, 4D13: Architectural Engineering, 2021-22

Module Leader (Engineering)

Dr R Choudhary

Module Leader (Architecture)

Dr M Ramage

Lecturer

Dr R Foster, Dr M Ramage, Dr D Shah

Timing and Structure

Michaelmas term. 8 afternoons. Assessment: 100% coursework

Prerequisites

[3D3, 3D4, 3D8] useful

Aims

The aims of the course are to:

  • Teach architects and engineers to work together to solve design problems at the intersection of their disciplines.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Operate and communicate effectively in multidisciplinary design teams of architects and engineers, and present solutions to and derive useful, actionable feedback from various stakeholders (e.g. client, peers and co-professionals, constructors)
  • By reflecting on and through improved understanding of the collaborative design process, apply appropriate management strategies to design innovative efficient solutions to a client’s design brief
  • Appreciate the principles of architectural engineering through investigation, critical appraisal and selection of appropriate structural systems, materials, and construction techniques relevant to architectural and engineering design , and assessing the e
  • Demonstrate proficiency in specialized design subject matter which integrates with the team’s design solution, such as timber engineering, resource efficient design, designing for well-being, reciprocity of context and design.

Content

This module is run in conjunction with the Department of Architecture. CUED students who elect to do this module will work together one full afternoon per week with final year students from the Department of Architecture. The module involves an architectural engineering design exercise, with students working in mixed groups of architects and engineers.

The course focuses on integrating architecture and engineering to produce new designs.  Developing an understanding of the challenges and opportunities presented by multidisciplinary teamwork is integral to the course. 

Projects vary considerably from year to year. The Michaelmas 2019 project was to design a tall timber building over an underground station in London. This year’s project will be quite different.

The teaching format will be unconventional. Each afternoon will usually begin with a short talk by one of the lecturers or by an external speaker. For the remaining class time, students will work in groups on developing their design project(s) with regular ‘studio’ style consultation sessions with teaching staff and/or guest speakers to provide feedback on design development. Depending on the covid19 restrictions prevailing at the time of the course, some, or perhaps all, of this ‘class’ time may be virtual. This presents us with some new challenges, but we hope that in overcoming them we may also find some new opportunities. This year’s project has been carefully designed with these challenges in mind.

Towards the end of the course each group will make a presentation of its design to a review panel of architectural, structural, environmental experts.

Course Schedule

All classes will be 2.00-5.00pm on Thursdays.

 

Week 1: Thursday 8th October

  • Course introduction
  • Groups will be allocated and teams will be built

 

Weeks 2-5: Thursday 15th October – Thursday 5th November

  • Talks on key skills or elements of the design process relevant to the project at hand.
  • Group work and ‘studio’ time with teaching staff supporting project development.

 

Week 6: Thursday 12th November

  • Presentations and design review
  • Groups will present their designs to a panel of expert reviewers and receive feedback

 

Week 7-8: Thursday 19th November - Thursday 26th November

  • Talks on key skills or elements of the design process relevant to the project at hand.
  • Group work and ‘studio’ time with teaching staff to refine designs in response to reviewer feedback and progress to production of the final group design submission.

Coursework

All coursework submissions are to be uploaded to relevant folder on the course moodle page. Detailed instructions will be provided on the course moodle page. There will be no hardcopy submissions.

Coursework Format

Due date

& marks

Group Presentation and Design Review

Each group will present their design proposal though a prepared video of 3-4 minutes, then get feedback from the jury

Group

Presentation

non-anonymously marked

(Names of all students in the group should be clearly listed on the video)

2 pm, 12/11/2020

Thu week 6

(20%)

Group Design Submission

Each group will submit a digital copy of their design, including fabrication drawings, and a short video (refinement of the previous) detailing the project and design process.

Group

Design Submission

non-anonymously marked

 5 pm, 28/11/2020

(20%)

 

Individual Report

A short report developing and extending one or more aspects of the group design (40%).

The report should also include a critical reflection on the collaborative, multi-disciplinary nature of the design process, and how, given your experience, you might improve the design process in the future (20%).

Individual Report

non-anonymously marked

4 pm, 18/01/2021

(60%)

This report is to be submitted individually by every student.

 

 

 

 

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D1

Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.

D2

Understand customer and user needs and the importance of considerations such as aesthetics.

D4

Ability to generate an innovative design for products, systems, components or processes to fulfil new needs.

D5

Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal.

D6

Manage the design process and evaluate outcomes.

S3

Understanding of the requirement for engineering activities to promote sustainable development.

S4

Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P4

Understanding use of technical literature and other information sources.

P6

Understanding of appropriate codes of practice and industry standards.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 20/05/2021 07:48

Engineering Tripos Part IIB, 4D13: Architectural Engineering, 2023-24

Module Leader (Engineering)

Prof R Choudhary

Lecturer

Prof R Choudhary, Dr D Shah

Timing and Structure

Michaelmas term. 8 afternoons. Assessment: 100% coursework

Prerequisites

[3D3, 3D4, 3D8] useful

Aims

The aims of the course are to:

  • Teach architects and engineers to work together to solve design problems at the intersection of their disciplines.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Operate and communicate effectively in multidisciplinary design teams of architects and engineers, and present solutions to and derive useful, actionable feedback from various stakeholders (e.g. client, peers and co-professionals, constructors)
  • By reflecting on and through improved understanding of the collaborative design process, apply appropriate management strategies to design innovative efficient solutions to a client’s design brief
  • Appreciate the principles of architectural engineering through investigation, critical appraisal and selection of appropriate structural systems, materials, and construction techniques relevant to architectural and engineering design , and assessing the e
  • Demonstrate proficiency in specialized design subject matter which integrates with the team’s design solution, such as timber engineering, resource efficient design, designing for well-being, reciprocity of context and design.

Content

This module is run in conjunction with the Department of Architecture. CUED students who elect to do this module will work together one full afternoon per week with final year students from the Department of Architecture. The module involves an architectural engineering design exercise, with students working in mixed groups of architects and engineers.

The course focuses on integrating architecture and engineering to produce new designs.  Developing an understanding of the challenges and opportunities presented by multidisciplinary teamwork is integral to the course. 

Projects vary considerably from year to year. The Michaelmas 2019 project was to design a tall timber building over an underground station in London. This year’s project will be quite different.

The teaching format will be unconventional. Each afternoon will usually begin with a short talk by one of the lecturers or by an external speaker. For the remaining class time, students will work in groups on developing their design project(s) with regular ‘studio’ style consultation sessions with teaching staff and/or guest speakers to provide feedback on design development. Depending on the covid19 restrictions prevailing at the time of the course, some, or perhaps all, of this ‘class’ time may be virtual. This presents us with some new challenges, but we hope that in overcoming them we may also find some new opportunities. This year’s project has been carefully designed with these challenges in mind.

Towards the end of the course each group will make a presentation of its design to a review panel of architectural, structural, environmental experts.

Course Schedule

All classes will be 2.00-5.00pm on Thursdays.

 

Week 1: Thursday 8th October

  • Course introduction
  • Groups will be allocated and teams will be built

 

Weeks 2-5: Thursday 15th October – Thursday 5th November

  • Talks on key skills or elements of the design process relevant to the project at hand.
  • Group work and ‘studio’ time with teaching staff supporting project development.

 

Week 6: Thursday 12th November

  • Presentations and design review
  • Groups will present their designs to a panel of expert reviewers and receive feedback

 

Week 7-8: Thursday 19th November - Thursday 26th November

  • Talks on key skills or elements of the design process relevant to the project at hand.
  • Group work and ‘studio’ time with teaching staff to refine designs in response to reviewer feedback and progress to production of the final group design submission.

Coursework

All coursework submissions are to be uploaded to relevant folder on the course moodle page. Detailed instructions will be provided on the course moodle page. There will be no hardcopy submissions.

Coursework Format

Due date

& marks

Group Presentation and Design Review

Each group will present their design proposal though a prepared video of 3-4 minutes, then get feedback from the jury

Group

Presentation

non-anonymously marked

(Names of all students in the group should be clearly listed on the video)

2 pm, 12/11/2020

Thu week 6

(20%)

Group Design Submission

Each group will submit a digital copy of their design, including fabrication drawings, and a short video (refinement of the previous) detailing the project and design process.

Group

Design Submission

non-anonymously marked

 5 pm, 28/11/2020

(20%)

 

Individual Report

A short report developing and extending one or more aspects of the group design (40%).

The report should also include a critical reflection on the collaborative, multi-disciplinary nature of the design process, and how, given your experience, you might improve the design process in the future (20%).

Individual Report

non-anonymously marked

4 pm, 18/01/2021

(60%)

This report is to be submitted individually by every student.

 

 

 

 

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D1

Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.

D2

Understand customer and user needs and the importance of considerations such as aesthetics.

D4

Ability to generate an innovative design for products, systems, components or processes to fulfil new needs.

D5

Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal.

D6

Manage the design process and evaluate outcomes.

S3

Understanding of the requirement for engineering activities to promote sustainable development.

S4

Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P4

Understanding use of technical literature and other information sources.

P6

Understanding of appropriate codes of practice and industry standards.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 30/05/2023 15:29

Engineering Tripos Part IIB, 4D13: Architectural Engineering, 2025-26

Module Leader (Engineering)

Prof R Choudhary

Module Leader (Architecture)

Dr A Koronaki

Timing and Structure

Michaelmas term. 8 afternoons. Assessment: 100% coursework

Prerequisites

None

Aims

The aims of the course are to:

  • Teach architects and engineers to work in tandem to solve design problems at the intersection of their disciplines.
  • Learn to coordinate and integrate aspects of building performace such as structures, energy, embodied carbon, and human well-being.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Operate and communicate effectively in multidisciplinary design teams of architects and engineers, and present solutions to and derive useful, actionable feedback from various stakeholders.
  • Appreciate the principles of architectural engineering through investigation, critical appraisal and selection of appropriate structural and energy systems, materials. and construction techniques.
  • Demonstrate proficiency in a specialized design subject matter which integrates with the team’s design solution, such structures, environmental design and building physics, designing for well-being, reciprocity of context and design.

Content

This module is run in conjunction with the Department of Architecture. CUED students who elect to do this module will work together one full afternoon per week with final year students from the Department of Architecture. The module involves an architectural engineering design exercise, with students working in mixed groups of architects and engineers.

The course focuses on integrating architecture and engineering to produce new designs.  Developing an understanding of the challenges and opportunities presented by multidisciplinary teamwork is integral to the course. 

Projects vary considerably from year to year. The Michaelmas 2024 project was to retrofit a derelict building on university of cambridge campus. This year’s project will be likely of smaller scale, thus including opportunities to learn about fabrication and delivery.

The teaching format will be unconventional. Each afternoon will usually begin with a short talk by one of the lecturers or by an external speaker. For the remaining class time, students will work in groups on developing their design project(s) with regular ‘studio’ style consultation sessions with teaching staff and/or guest speakers to provide feedback on design development. 

Towards the end of the course each group will make a presentation of its design to a review panel of architectural, structural, energy experts.

Course Schedule

All classes will be 2.00-5.00pm on Thursdays.

 

Week 1: Thursday 9th October

  • Course introduction
  • Groups will be allocated and teams will be built

 

Weeks 2-5: Thursday 16th October – Thursday 6th November

  • Talks on key skills or elements of the design process relevant to the project at hand.
  • Group work and ‘studio’ time with teaching staff supporting project development.

 

Week 6: Thursday 13th November

  • Presentations and design review
  • Groups will present their designs to a panel of expert reviewers and receive feedback

 

Week 7-8: Thursday 20th November - Thursday 27th November

  • Talks on key skills or elements of the design process relevant to the project at hand.
  • Group work and ‘studio’ time with teaching staff to refine designs in response to reviewer feedback and progress to production of the final group design submission.

Coursework

All coursework submissions are to be uploaded to relevant folder on the course moodle page. Detailed instructions will be provided on the course moodle page. There will be no hardcopy submissions.

Coursework Format

Due date

& marks

Group Presentation and Design Review

Each group will present their design proposal though a prepared video of 3-4 minutes, then get feedback from the jury.

Group

Presentation

non-anonymously marked

(Names of all students in the group should be clearly listed on the video)

2 pm, 13/11/2025

Thu week 6

(20%)

Group Model Submission

Each group will submit a scale model of their design, including fabrication drawings.

Group

Design Submission

non-anonymously marked

 5 pm, 29/11/2020

(20%)

 

Individual Report

A report developing and extending one aspect of the group design.

 

Individual Report

non-anonymously marked

4 pm, 18/01/2021

(60%)

This report is to be submitted individually by every student.

 

 

 

 

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D1

Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.

D2

Understand customer and user needs and the importance of considerations such as aesthetics.

D4

Ability to generate an innovative design for products, systems, components or processes to fulfil new needs.

D5

Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal.

D6

Manage the design process and evaluate outcomes.

S3

Understanding of the requirement for engineering activities to promote sustainable development.

S4

Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P4

Understanding use of technical literature and other information sources.

P6

Understanding of appropriate codes of practice and industry standards.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 02/10/2025 15:41

Engineering Tripos Part IIB, 4D13: Architectural Engineering, 2017-18

Module Leader (Engineering)

Dr R Choudhary

Module Leader (Architecture)

Prof C A Short

Lecturers

Dr R Choudhary, Mr F A McRobie, Dr S Smith,

Timing and Structure

Michaelmas term. 8 afternoons. Assessment: 100% coursework

Prerequisites

[3D3, 3D4, 3D8] useful

Objectives

As specific objectives, by the end of the course students should be able to:

  • have some appreciation of the principles of architectural engineering, with a strong focus on environmental and structural aspects.
  • be aware of the various functional requirements of building services and building envelopes, and of how they can be met by combinations of materials and proper construction techniques.
  • be aware of current digital and computational techniques used in design analysis.
  • gain an appreciation for design using timber

Content

This module is run in conjunction with the Department of Architecture. CUED students who elect to do this module will work together one full afternoon per week with final year students from the Department of Architecture. The module involves an architectural engineering design exercise, with students working in mixed groups of architects and engineers.

The course focuses on energy-efficient building designs. It also considers structural design -- specifically timber.

This year (Mich 2017) the exercise consists of designing tall timber buildings.

The teaching format will be unconventional. Each afternoon will probably begin with a short talk by one of the lecturers or by an external speaker. For the remaining class time, students will work (in groups) on developing environmental, structural and other strategies for their design project.

On week 5 of the course, each group will make a presentation of its design (including a physical model) to an assembled group of architectural, structural, environmental experts.  Weeks 6-8 will be devoted to developing detailed design of parts of the project.

Coursework

 

Coursework:

 

- 5% for week 1 group exercise

- 20% for the group presentation of the design and the model on week 5

- 15% for group report on last day of term

- 60% for an individually authored report on developing an aspect of the design and analysis, to be submitted digitally on Moodle by each student by 4.00pm on the first day of the Lent Term.

Coursework Format

Due date

& marks

[Coursework activity #1 title / Interim]

Coursework 1 brief description

Learning objective:

  •  
  •  

Individual/group

Report / Presentation

[non] anonymously marked

day during term, ex:

Thu week 3

[xx/60]

[Coursework activity #2 title / Final]

Coursework 2 brief description

Learning objective:

  •  
  •  

Individual Report

[non] anonymously marked

  Wed week 9

[xx/60]

 

 

Booklists

Please see the Booklist for Group D Courses for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D1

Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.

D2

Understand customer and user needs and the importance of considerations such as aesthetics.

D4

Ability to generate an innovative design for products, systems, components or processes to fulfil new needs.

D5

Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal.

D6

Manage the design process and evaluate outcomes.

S3

Understanding of the requirement for engineering activities to promote sustainable development.

S4

Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P4

Understanding use of technical literature and other information sources.

P6

Understanding of appropriate codes of practice and industry standards.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 10/10/2017 12:05

Engineering Tripos Part IIB, 4D13: Architectural Engineering, 2019-20

Module Leader (Engineering)

Dr R Foster

Module Leader (Architecture)

Dr M Ramage

Lecturers

Dr S Smith, Dr D Shah, Dr R Foster, Dr M Ramage

Lab Leader

Dr R Foster

Timing and Structure

Michaelmas term. 8 afternoons. Assessment: 100% coursework

Prerequisites

[3D3, 3D4, 3D8] useful

Objectives

As specific objectives, by the end of the course students should be able to:

  • Operate and communicate effectively in multidisciplinary design teams of architects and engineers, and present solutions to and derive useful, actionable feedback from various stakeholders (e.g. client, peers and co-professionals, constructors)
  • By reflecting on and through improved understanding of the collaborative design process, apply appropriate management strategies to design innovative efficient buildings to a client’s design brief
  • Appreciate the principles of architectural engineering through investigation, critical appraisal and selection of appropriate structural systems, materials, and construction techniques relevant to architectural and engineering design
  • Understand and assess the environmental impact of design choices
  • Demonstrate proficiency in specialized design subject matter which integrates with the team’s design solution, such as timber engineering, resource efficient design, designing for well-being, reciprocity of urban context and building design.

Content

This module is run in conjunction with the Department of Architecture. CUED students who elect to do this module will work together one full afternoon per week with final year students from the Department of Architecture. The module involves an architectural engineering design exercise, with students working in mixed groups of architects and engineers.

The course focuses on integrating architecture and engineering to produce new building designs.  Developing an understanding of the challenges and opportunities presented by multidisciplinary teamwork is integral to the course. 

Projects vary from year to year. The Michaelmas 2018 project was to design a tall timber building in London.

The teaching format will be unconventional. Each afternoon will probably begin with a short talk by one of the lecturers or by an external speaker. For the remaining class time, students will work (in groups) on developing environmental, structural and other strategies for their design project.

On week 6 of the course, each group will make a presentation of its design ( including a physical model) to an assembled group of architectural, structural, environmental experts.  Weeks 7-8 will provide an opportunity to incorporate the feedback from week 6 into the overall design and to develop aspects of the design in further detail.

Course Schedule

All classes will be in LR3, Inglis Building, Engineering Dept., 2.00-5.00pm Thursdays.

1. Thursday 10th October

             Course Introduction

  • Talk 1: Supertall Timber  (Michael Ramage)
  • Groups will be allocated
  • Teams will be built

2. Thursday 17th October

  • Talk 2: Engineering
  • Group work

3. Thursday 24th October

  • Talk 3: Client
  • Group work

4. Thursday 31st October

  • Talk 4: Architecture
  • Group work

5. Thursday 07th  November

  • Talk 5: Fire safety
  • Group Work

6. Thursday14th November

  • Design Review (25% mark) Critics from a range of disciplines and backgrounds

7. Thursday 21st November

  • Talk 6: Impacts

8. Thursday 28th  November

  • Feedforward session
  • Group work

Coursework

 

Coursework:

 

- 25% for the group presentation of the design and the model on week 6

- 15% for technical manual on 02/12/2019

- 60% for an individually authored report on developing an aspect of the design and analysis, to be submitted digitally on Moodle by each student by 4.00pm on the first day of the Lent Term.

 

Task

Due Date

Design Review  (25% mark)

Each group will orally present their design proposal, with 2 posters (A1 size) and a model of their building. Teams are allowed to use additional models and/or visual materials to present their design.

Designs will be judged on presentation, integration, creativity and feasibility of the proposal.

2 pm, 14/11/2019

 

Also upload posters as *pdfs on moodle

 

Names of all students in the group should be clearly listed on the posters uploaded onto moodle.

Technical Manual (15% mark)

Each group will submit a report of 4 A4 size pages describing technical elements of their building design.  Think of this as a “development proposal brochure” – it has to cover the necessary ground both briefly and in sufficient detail.

The technical manual will be judgesd on presentation, design rationale, technical content and creativity.

5 pm, 02/12/2019

 

To be uploaded as *pdf on moodle

Individual Report (60% mark)

A report of 4-6 A4 size pages showing detailed analysis and outcomes of one selected element of the design. For the selected element of design, the report should clearly explain all relevant assumptions, numerical results, technical figures, with appropriate references. The report should include critical reflection on the experience of project work in a team.

The individual report will be assessed on presentation, design rational and analytical content, integration with overall group design, and critical reflection on the design process.

The 4-6 page report should be complete in itself. Secondary but relevant material may be included in the appendices but will be considered to be strictly supplementary and will not be marked.

Think of this report as the detail to accompany the previous “brochure” – if you put all of your group’s reports together, you’d have a complete narrative to describe your proposal in detail.

4 pm, 16/01/2020

This report is to be submitted individually by every student and not as group work, both on paper and moodle.

Architects should submit work to the Faculty Office. Marking is not anonymous, so all students must write their name and CRSID on the reports.

 

 

Booklists

Please see the Booklist for Group D Courses for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D1

Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.

D2

Understand customer and user needs and the importance of considerations such as aesthetics.

D4

Ability to generate an innovative design for products, systems, components or processes to fulfil new needs.

D5

Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal.

D6

Manage the design process and evaluate outcomes.

S3

Understanding of the requirement for engineering activities to promote sustainable development.

S4

Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P4

Understanding use of technical literature and other information sources.

P6

Understanding of appropriate codes of practice and industry standards.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 23/09/2019 15:49

Engineering Tripos Part IIB, 4D13: Architectural Engineering, 2022-23

Module Leader (Engineering)

Prof R Choudhary

Module Leader (Architecture)

Dr M Ramage

Lecturer

Dr R Foster, Dr M Ramage, Dr D Shah

Timing and Structure

Michaelmas term. 8 afternoons. Assessment: 100% coursework

Prerequisites

[3D3, 3D4, 3D8] useful

Aims

The aims of the course are to:

  • Teach architects and engineers to work together to solve design problems at the intersection of their disciplines.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Operate and communicate effectively in multidisciplinary design teams of architects and engineers, and present solutions to and derive useful, actionable feedback from various stakeholders (e.g. client, peers and co-professionals, constructors)
  • By reflecting on and through improved understanding of the collaborative design process, apply appropriate management strategies to design innovative efficient solutions to a client’s design brief
  • Appreciate the principles of architectural engineering through investigation, critical appraisal and selection of appropriate structural systems, materials, and construction techniques relevant to architectural and engineering design , and assessing the e
  • Demonstrate proficiency in specialized design subject matter which integrates with the team’s design solution, such as timber engineering, resource efficient design, designing for well-being, reciprocity of context and design.

Content

This module is run in conjunction with the Department of Architecture. CUED students who elect to do this module will work together one full afternoon per week with final year students from the Department of Architecture. The module involves an architectural engineering design exercise, with students working in mixed groups of architects and engineers.

The course focuses on integrating architecture and engineering to produce new designs.  Developing an understanding of the challenges and opportunities presented by multidisciplinary teamwork is integral to the course. 

Projects vary considerably from year to year. The Michaelmas 2019 project was to design a tall timber building over an underground station in London. This year’s project will be quite different.

The teaching format will be unconventional. Each afternoon will usually begin with a short talk by one of the lecturers or by an external speaker. For the remaining class time, students will work in groups on developing their design project(s) with regular ‘studio’ style consultation sessions with teaching staff and/or guest speakers to provide feedback on design development. Depending on the covid19 restrictions prevailing at the time of the course, some, or perhaps all, of this ‘class’ time may be virtual. This presents us with some new challenges, but we hope that in overcoming them we may also find some new opportunities. This year’s project has been carefully designed with these challenges in mind.

Towards the end of the course each group will make a presentation of its design to a review panel of architectural, structural, environmental experts.

Course Schedule

All classes will be 2.00-5.00pm on Thursdays.

 

Week 1: Thursday 8th October

  • Course introduction
  • Groups will be allocated and teams will be built

 

Weeks 2-5: Thursday 15th October – Thursday 5th November

  • Talks on key skills or elements of the design process relevant to the project at hand.
  • Group work and ‘studio’ time with teaching staff supporting project development.

 

Week 6: Thursday 12th November

  • Presentations and design review
  • Groups will present their designs to a panel of expert reviewers and receive feedback

 

Week 7-8: Thursday 19th November - Thursday 26th November

  • Talks on key skills or elements of the design process relevant to the project at hand.
  • Group work and ‘studio’ time with teaching staff to refine designs in response to reviewer feedback and progress to production of the final group design submission.

Coursework

All coursework submissions are to be uploaded to relevant folder on the course moodle page. Detailed instructions will be provided on the course moodle page. There will be no hardcopy submissions.

Coursework Format

Due date

& marks

Group Presentation and Design Review

Each group will present their design proposal though a prepared video of 3-4 minutes, then get feedback from the jury

Group

Presentation

non-anonymously marked

(Names of all students in the group should be clearly listed on the video)

2 pm, 12/11/2020

Thu week 6

(20%)

Group Design Submission

Each group will submit a digital copy of their design, including fabrication drawings, and a short video (refinement of the previous) detailing the project and design process.

Group

Design Submission

non-anonymously marked

 5 pm, 28/11/2020

(20%)

 

Individual Report

A short report developing and extending one or more aspects of the group design (40%).

The report should also include a critical reflection on the collaborative, multi-disciplinary nature of the design process, and how, given your experience, you might improve the design process in the future (20%).

Individual Report

non-anonymously marked

4 pm, 18/01/2021

(60%)

This report is to be submitted individually by every student.

 

 

 

 

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D1

Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.

D2

Understand customer and user needs and the importance of considerations such as aesthetics.

D4

Ability to generate an innovative design for products, systems, components or processes to fulfil new needs.

D5

Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal.

D6

Manage the design process and evaluate outcomes.

S3

Understanding of the requirement for engineering activities to promote sustainable development.

S4

Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

E4

Understanding of and ability to apply a systems approach to engineering problems.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P4

Understanding use of technical literature and other information sources.

P6

Understanding of appropriate codes of practice and industry standards.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 29/07/2022 08:48

Engineering Tripos Part IIB, 4D8: Pre-stressed Concrete (shared with IIA), 2017-18

Module Leader

Prof T Ibell

Lecturer

Prof T Ibell`

Lab Leader

Prof T Ibell

Timing and Structure

Lent term. 16 lectures (including examples classes) + coursework. Assessment: 100% exam

Prerequisites

3D3 and 3D4 useful

Aims

The aims of the course are to:

  • understand the analysis and design of prestressed concrete.
  • understand various issues associated with prestressed concrete which are core to its success.

Objectives

As specific objectives, by the end of the course students should be able to:

  • understand the principles of prestressed concrete, and appreciate why it has important structural advantages.
  • be able to design and analyse statically determinate, composite and statically indeterminate prestressed concrete structures.

Content

Basic Principles (7L)

Introduction, prestress applications, definitions, section design, Magnel diagram, statically determinate structures, limits on stress, practical considerations, current problems, new horizons, new materials.
 

Indeterminate beams (3L)

Secondary moments, line of pressure, concordant profiles, design approaches for continuous beams.
 

Strength Calculations (3L)

Ultimate strength (simple modifications to RC theory), shear failure and prevention.
 

Losses and the long term (3L)

Loss of prestress, creep, composite construction.
 

Coursework

This will consist of carrying out a test on a prestressed concrete beam, plus a write-up.

Prestressed Concrete Laboratory

Learning objectives

  • To understand how concrete can be prestressed
  • To see the effect which such prestress has on a beam
  • To observe failure of a prestressed concrete beam

Practical information:

  • Sessions will take place in the Structures Laboratory on dates yet to be determined.
  • This activity doesn't involve preliminary work.

 

Booklists

Please see the Booklist for Group D Courses for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D1

Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 05/10/2017 16:22

Engineering Tripos Part IIB, 4D5: Foundation Engineering, 2017-18

Module Leader

Dr G Biscontin

Lecturers

Dr G Biscontin and Dr S K Haigh

Timing and Structure

Lent term. 14 lectures. Assessment: 100% exam

Prerequisites

3D2 assumed

Aims

The aims of the course are to:

  • introduce the challenges of foundation design and examine possible solutions; from simple pad footings, through piles and caissons, to drop-and drag-anchors.

Objectives

As specific objectives, by the end of the course students should be able to:

  • assess the design requirements of a foundation.
  • deduce appropriate soil properties for foundation design from site investigation data.
  • decide whether to use a shallow or deep foundation.
  • design shallow and deep foundations against collapse.
  • design shallow and deep foundations against excessive settlement.
  • explain the difference between drained and undrained response.
  • recognise mechanisms which contribute to generating deformations and load capacity.
  • back-analyse observed foundation performance
  • appreciate lessons learnt from field data obtained from case histories.

Content

All civil engineering structures from houses to tethered oil platforms require foundations.

The module begins by examining the requirements of a foundation; the applied loading, the acceptable deformations and the derivation of appropriate soil properties for each aspect of design.

The module then builds on material from 3D2 (geotechnical engineering) to examine theoretical solutions for the capacity (strength) and settlement (stiffness) of shallow and deep foundations under simple loading conditions in idealised soils. Strength is dealt with using plasticity. Stiffness is dealt with using elasticity. These theoretical solutions are then extended to more complex loading conditions and less idealised soils. The course is widely illustrated with case studies from the offshore industry.

Foundations Design (2L)

  • Foundation types;
  • Loading conditions;
  • Allowable deformations;
  • Relevant soil behaviour and soil models;
  • Selection of design soil properties

Shallow Foundations (6L)

  • Strength: Undrained failure of strip footings: Vertical (V), Horizontal (H) and Moment (M) capacity;
  • Strength: Drained failure of strip footings: V-H-M capacity, superposition of surcharge and self-weight effects;
  • Effects of footing shape and embedment, and soil heterogeneity;
  • Stiffness: Elastic settlement of shallow foundations: drained and undrained;
  • Stiffness: Settlement of shallow foundations on non-linear soil.

Deep Foundations (6L)

  • Deep foundation types and construction methods; piles, caissons, drop-anchors;
  • Pile strength: Axial and lateral capacity;
  • Pile stiffness: Axial and lateral deformations;
  • Piles: load testing, influence of installation method on performance;
  • Pile groups: mutual influence, block behaviour, differential settlement;
  • Offshore solutions: caissons, anchors: installation methods and capacity.

Coursework

The preliminary evaluation of three design solutions for an offshore wind turbine foundation.

Booklists

Please see the Booklist for Group D Courses for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 10/10/2017 12:07

Engineering Tripos Part IIB, 4D5: Foundation Engineering, 2018-19

Module Leader

Dr G Biscontin

Lecturers

Dr G Biscontin and Dr S K Haigh

Timing and Structure

Lent term. 14 lectures. Assessment: 100% exam

Prerequisites

3D2 assumed

Aims

The aims of the course are to:

  • introduce the challenges of foundation design and examine possible solutions from simple pad footings, through piles and caissons.

Objectives

As specific objectives, by the end of the course students should be able to:

  • assess the design requirements of a foundation.
  • deduce appropriate soil properties for foundation design from site investigation data.
  • decide whether to use a shallow or deep foundation.
  • design shallow and deep foundations against collapse.
  • design shallow and deep foundations against excessive settlement.
  • explain the difference between drained and undrained response.
  • recognise mechanisms which contribute to generating deformations and load capacity.
  • back-analyse observed foundation performance

Content

All civil engineering structures from houses to tethered oil platforms require foundations.

The module begins by examining the requirements of a foundation; the applied loading, the acceptable deformations and the derivation of appropriate soil properties for each aspect of design.

The module then builds on material from 3D2 (geotechnical engineering) to examine theoretical solutions for the capacity (strength) and settlement (stiffness) of shallow and deep foundations under simple loading conditions in idealised soils. Strength is dealt with using plasticity. Stiffness is dealt with using elasticity. These theoretical solutions are then extended to more complex loading conditions and less idealised soils. 

Obtaining geotechnical data

  • Site investigation methods
  • Field measurements of soil stiffness
  • Laboratory assessment of soil strength and stiffness parameters
  • Small strain stiffness of soils

Foundations Design

  • Foundation types;
  • Loading conditions;
  • Relevant soil behaviour and soil models;
  • Selection of design soil properties

Shallow Foundations

  • Strength: undrained failure of strip footings: vertical (V), horizontal (H) and moment (M) capacity;
  • Strength: drained failure of strip footings: V-H-M capacity, superposition of surcharge and self-weight effects;
  • Effects of footing shape and embedment, and soil heterogeneity;
  • Stiffness: elastic settlement of shallow foundations: drained and undrained;
  • Stiffness: settlement of shallow foundations on non-linear soil.

Deep Foundations (6L)

  • Deep foundation types and construction methods; piles and caissons.
  • Pile strength: axial and lateral capacity;
  • Pile stiffness: axial and lateral deformations;
  • Piles: load testing, influence of installation method on performance;
  • Pile groups: mutual influence, block behaviour, differential settlement;

Booklists

Please see the Booklist for Group D Courses for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 31/05/2018 18:28

Pages

Subscribe to US4