Undergraduate Teaching 2024-25

Engineering Tripos Part IIA, 3A3: Fluid Mechanics II (double module), 2018-19

Engineering Tripos Part IIA, 3A3: Fluid Mechanics II (double module), 2018-19

Not logged in. More information may be available... Login via Raven / direct.

PDF versionPDF version

Module Leader

Prof RS Cant

Lecturers

Dr A Agarwal, Prof RS Cant, Dr J Jarrett and Dr J Longley

Lab Leaders

Prof H Babinsky and Prof R Miller

Timing and Structure

Michaelmas and Lent. 32 lectures.

Aims

The aims of the course are to:

  • To understand fluid flows to a level such that the pressures and resultant forces acting can be estimated in situations involving complex geometries of industrial interest at both subsonic and supersonic speed.
  • To understand the effects of viscosity and heat transfer, where relevant

Objectives

As specific objectives, by the end of the course students should be able to:

  • Know the concepts of stagnation temperature and stagnation pressure and be able to determine their values from a knowledge of static temperature, static pressure and Mach number.
  • Know how conservation principles determine the behaviour of normal shock waves and be able to use tables to quantify that behaviour.
  • Evaluate Mach number of a flow from measurements of Pitot and static pressures.
  • Determine flow patterns in nozzles under the assumption of one dimensionality, using tables.
  • Know how Mach number and other flow properties change under the influence of friction or heat exchange, and be able to quantify this using tables.
  • Know how to construct and interpret x-t diagrams for unsteady ID flow.
  • Quantify the behaviour of hydraulic jumps and infinitesimal waves in shallow water.
  • Understand the influence of the speed of sound on two-dimensional compressible flow behaviour.
  • Apply the two-dimensional method of characteristics for simple flows and flows involving reflection/cancellation.
  • Understand the origin of oblique shock waves and their reflection.
  • Apply the preceding ideas to practical flows via shock-expansion theory, linearised method of characteristics and linearised potential theory.
  • Know how to construct and use numerical solution methods for the equations of fluid flow using finite difference and finite volume approximations
  • Know how to estimate the accuracy and analyse the stability of numerical schemes
  • Identify and understand the operation of different types of turbomachinery.
  • Analyse turbomachinery performance.
  • Understand the causes of irreversibilities within the blade passages and their affects on the overall efficiency.
  • Analyse compressible flow through turbomachines.

Content

One-dimensional Compressible Flow (12L): 2 lectures/week, weeks 1-6 Michaelmas term (Prof RS Cant)

  • Steady, adiabatic and inviscid flow; speed of sound; reversibility; the stagnation state; the effect of area variation on subsonic/supersonic flow, choking; normal shock waves; flow patterns in nozzles; use of table for isentropic flow and for shock waves.
  • Fanno and Rayleigh line processes for the effects of friction and heat exchange.
  • Introduction to unsteady flow. hydraulic analogy for steady compressible flow; speed of waves in shallow water; the hydraulic jump; the venturi flume; weirs.

Two-dimensional Compressible Flow (8L): 2 lectures/week, weeks 7-8 Michaelmas term and weeks 1-2 Lent term (Dr JP Jarrett)

  • Method of characteristics, expansion fan and compression ramp.
  • Oblique shock waves, strong and weak solutions.
  • Shock-expansion theory
  • Potential equation and linearisation. 

Equations of Fluid Flow and their Numerical Solution (6L): 2 lectures/week, weeks 3-5 Lent term (Dr A Agarwal)

  • Numerical solution techniques; finite difference approximations; finite volume approximations; order of accuracy, diffusion and dispersion errors; stability considerations for time iterative techniques
  • Classification of equations; numerical solution of the Euler equations, nonlinearity and shock waves

Turbomachinery (6L): 2 lectures/week, weeks 6-8 Lent term (Dr JP Longley)

  • Identify and understand the operation of different types of turbomachinery.
  • Analyse turbomachinery performance.
  • Understand the causes of irreversibilities within the blade passages and their affects on the overall efficiency.
  • Analyse compressible flow through turbomachines.

 

Coursework

Turbomachinery

 

Nozzle and supersonic tunnel

Learning objectives

  •  
  •  
  •  

Practical information:

  • Sessions will take place in [Location], during week(s) [xxx].
  • This activity [involves/doesn't involve] preliminary work ([estimated duration]).
  •  

Full Technical Report:

Students will have the option to submit a Full Technical Report.

 

Booklists

Please see the Booklist for Part IIA Courses for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

 
Last modified: 13/09/2018 14:35

Back to Top