Undergraduate Teaching

Engineering Tripos Part IIA, 3C8: Machine Design, 2021-22

Engineering Tripos Part IIA, 3C8: Machine Design, 2021-22

Not logged in. More information may be available... Login via Raven / direct.

PDF versionPDF version

Module Leader

Dr D.J. Cole


Dr D.J. Cole, Prof M.P.F. Sutcliffe and Dr R L Roebuck

Lab Leader

Dr D.J. Cole

Timing and Structure

Michaelmas term.16 lectures. All lectures to be delivered in-person.


The aims of the course are to:

  • Analyse the contact stresses and kinematical behaviour of solid contacts and to understand the design of rolling element bearings and other machine elements.
  • Understand the design of involute gears and appreciate the stress limits and practical problems of gears.
  • To analyse the behaviour of multiple gear drives and planetary gears.
  • Understand how components are combined to make up a mechanical power transmission system, including power matching to achieve a desired operating point.
  • Apply the principles of power matching to hybrid drives.
  • Introduce methods for specifying the type and arrangement of rolling element bearings to meet a specified duty.


As specific objectives, by the end of the course students should be able to:

  • Calculate the strength limitations of solid contacts.
  • Analyse the kinematical behaviour of contacts, especially in rotating machinery.
  • Understand and analyse the performance of friction drives.
  • Be familiar with the geometry and kinematics of involute gear wheels and racks.
  • Understand the criterion for tooth bending failure and be able to derive the Hertz pressure at tooth contacts.
  • Use power and torque calculations to analyse epicyclic gears and multiple gear drives.
  • Understand how power transmission components are used as part of a system, including hybrid drives.
  • Determine the operating point and calculate the optimum speed ratio for specified conditions.
  • Select a rolling element bearing for a specific duty.


Mechanics of contacts (5L) Dr Richard Roebuck

  • Hertzian point contacts
  • Stresses and stiffness
  • Hertzian line contacts
  • Applications in bearings and CVTs
  • Traction drives and CVTs 


Gears (6L) Prof Michael Sutcliffe

  • Geometry and kinematics
  • Failure, root bending and contact fatigue
  • Design and applications
  • Multiple drives and planetary gears
  • Design calculations for planetary gears 


Power matching (3L) Dr David Cole

  • Introduction and applications: automotive transmission, bicycle transmission
  • Sources and loads; devices and their characteristics
  • Power matching using a simple gear ratio
  • Hybrid drives 


Rolling element bearings (2L) Dr David Cole

  • Bearing types; life equation
  • Shaft and bearing arrangements 

Further notes

3C8 Teaching Arrangements for Michaelmas Term 2021

It is planned to teach this module entirely in person, while following all guidelines and regulations concerning covid. Since the module is likely to have fewer than 100 students, all lectures will be delivered in person. Lectures will be recorded but not live-streamed. Supervision arrangements are still to be finalised. It is hoped that normal supervision arrangements will be possible (groups of 2-4 students, 3 supervsions in Mich term plus one revision supervision), but social distancing constraints might require a blend of in person and online provision. Supervisions will be augmented by video cribs of the examples papers. It is planned that the courework experiment will be performed as normal, with students working in the lab in pairs with appropriate mask wearing and social distancing.

Examples papers

Examples Paper 1 - Mechanics of contacts (issued at lecture 1)

Examples Paper 2 - Gears (issued at lecture 6)

Examples Paper 3 - Power matching, rolling element bearings (issued at lecture 12)





Power output characteristic of a cyclist

In this experiment the power output charateristic of a cyclist will be determined by holding the heart rate (a proxy for power input) constant and determining the dependence of crank torque and crank power on crank speed. 

Learning objectives

  • to calibrate and operate instrumentation to measure human power output
  • to propose and test an hypothesis using measured data with large inherent uncertainty
  • to understand the power output characteristic of a cyclist

Practical information:

  • Sessions will take place in the Baker Building, South Wing Mechanics Laboratory, during weeks 2 to 8.
  • This activity does involve preliminary work, approximately 40 minutes: read the lab sheet carefully and watch the demonstration video before the session.
  • Book a timeslot online via the moodle site.
  • The practical needs to be done in pairs, with at least one member of the pair being comfortable riding the stationary bicycle

Full Technical Report:

Students will have the option to submit a Full Technical Report. The FTR should be a complete, detailed, formal report of the experiment, suitable for publication in an engineering journal. It should include all of the information necessary for the reader to understand the aim, objectives, apparatus, method, results, analysis, discussion and conclusions. In addition the FTR should describe in precise engineering terms the operating principles of three different commercially-available devices for measuring cyclist power output, and comment upon likely sources and magnitudes of error. 


Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.


The UK Standard for Professional Engineering Competence (UK-SPEC) describes the requirements that have to be met in order to become a Chartered Engineer, and gives examples of ways of doing this.

UK-SPEC is published by the Engineering Council on behalf of the UK engineering profession. The standard has been developed, and is regularly updated, by panels representing professional engineering institutions, employers and engineering educators. Of particular relevance here is the 'Accreditation of Higher Education Programmes' (AHEP) document which sets out the standard for degree accreditation.

The Output Standards Matrices indicate where each of the Output Criteria as specified in the AHEP 3rd edition document is addressed within the Engineering and Manufacturing Engineering Triposes.

Last modified: 24/09/2021 15:27