Undergraduate Teaching 2023-24

Engineering Tripos Part IIA, 3D3: Structural Materials & Design, 2020-21

Engineering Tripos Part IIA, 3D3: Structural Materials & Design, 2020-21

Not logged in. More information may be available... Login via Raven / direct.

PDF versionPDF version

Module Leader

Dr R Foster

Lecturers

Dr R Foster, Prof A Lawrence, Dr J Becque

Lab Leader

Dr R Foster

Timing and Structure

Michaelmas Term. 16 Lectures.

Aims

The aims of the course are to:

  • cover the basic principles of practical design of typical engineering structures, with applications across a range of commonly-used structural materials.
  • establish links between the theory of structures, taught in the Part I courses IA Structural Mechanics and IB Structures, and the properties of materials as covered in courses on Materials and Engineering Applications.
  • study what differing approaches to design are appropriate for structures in different materials.
  • develop a design methodology that provides a firm basis for the structures courses taught in Part IIA and for the more advanced courses in the fourth year.

Objectives

As specific objectives, by the end of the course students should be able to:

  • choose structural forms appropriate to different materials
  • identify factors (requirements, properties, behaviour) governing structural design in various materials
  • make reasonable initial layout and sizing choices for simple structures in various materials
  • carry out design calculations for basic structural elements in various materials
  • determine what design approaches will be appropriate, and what calculations necessary, for more complex structures in various materials.
  • consider the influence of risk, and variability of loading and material properties, in structural design and calculation
  • consider the environmental impacts of structural material and design choices

Content

The implications of the general principles of structural mechanics – equilibrium, compatibility, constitutive laws, and stability – are investigated for different materials.  This leads to discussion of typical structural forms in the various materials, the reasons for adopting them, and appropriate methods of construction. The significant types of structural behaviour, and therefore the most useful methods of analysis and calculation, are investigated for the different material types. Our basic aim is to establish means of making reasonable preliminary decisions about structural form, layout and initial sizing of structural members made from a range of common construction materials.

Design methodologies will be developed, and design of typical elements will be discussed, for:

  • materials of low tensile but high compressive strength, such as masonry and glass;
  • composite materials of low tensile strength combined with a ductile tensile material, such as reinforced concrete;
  • high-strength, ductile materials such as steel and aluminium alloys;
  • moderate-  to high-strength, anisotropic, brittle materials such as engineered timber.

The critical modes of failure of structures made from these materials tend to differ, as do other considerations such as environmental impacts, so design approaches will be correspondingly different.

Overview and principles (4 Lecture equivalent)

  • Introduction to the course and overview of structural materials and implications of material properties for structural design
  • Load paths and the application (and limitations) of the lowerbound theory in structural design
  • Limit state design and consideration of material variability in achieving appropriate levels of reliability
  • Resource efficiency and sustainability in structural design

Masonry (1 Lecture equivalent)

Concrete and reinforced concrete (2 Lecture equivalent)

Glass (2 Lecture equivalent)

Ductile Metals (3 Lecture eqivalent)

Timber (3 Lecture equivalent)

Conclusions (1 Lecture equivalent)

Coursework

Concrete Lab

Learning objectives

To be able to:

1.Describe the common ingredients of concrete and their properties;
2.Design a concrete mix to satisfy certain technical requirements and cast a trial cube;
3.Supervise the casting of reinforced concrete beams and various plain concrete specimens for subsequent testing;
4.Observe and record results of destructive testing and identify different failure modes in concrete;
5.Compare empirical results with theoretical predictions based on as built-data, and evaluate the effectiveness and limitations of the theory.

Practical information:

Details will be available on the course Moodle page early in the term.

Full Technical Report:

Students will have the option to submit a Full Technical Report.

Booklists

Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

D1

Wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S3

Understanding of the requirement for engineering activities to promote sustainable development.

S4

Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P4

Understanding use of technical literature and other information sources.

P6

Understanding of appropriate codes of practice and industry standards.

P7

Awareness of quality issues.

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

US3

An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

US4

An awareness of developing technologies related to own specialisation.

 
Last modified: 05/10/2020 02:57