Engineering Tripos Part IIB, 4C3: Advanced Functional Materials and Devices, 2025-26
Module Leader
Lecturers
Prof. J Durrell, Dr J Alexander-Webber
Timing and Structure
Michaelmas term. 14 lectures + 2 Exercise Classes/Practical Demonstrations. Assessment: 100% exam. Will be taught in person with lectures recorded.
Aims
The aims of the course are to:
- introduce a range of modern functional materials and devices emphasising their processing, properties and limitations.
- introduce principles to describe the origins of the electronic, optical, and magnetic properties of materials, and to explore structure-property relationships for bulk, thin film and nano-materials.
- discuss how these properties can be characterised and engineered for applications ranging from bulk superconductors to piezoelectric sensors, integrated CMOS, solid state lighting, displays and non-volatile memory.
- provide analysis of the key issues shaping the field and the key technologies reshaping society.
Objectives
As specific objectives, by the end of the course students should be able to:
- appreciate the range and diversity of modern functional materials.
- understand band diagrams and basic implications of quantum mechanics.
- understand qualitatively the origin of ferromagnetic and superconducting order in materials and how this results in useful materials properties.
- understand how extrinsic and intrinsic factors affect the performance of magnetic, superconducting and electrical materials.
- be able to apply their understanding of functional materials to making materials selection decisions.
- understand ferroic, non-linear response materials and the underlying phase transitions.
- understand interface behaviour and basic junctions as the basis for semiconductor device engineering.
- understand size-effects and how materials structure and properties can be controlled from the bulk to thin films and down to the nanoscale.
- understand manufacturing and characterisation requirements of these materials.
- identify current and future materials for a range of state-of-the-art sensor, integrated circuit, lighting, display and memory technologies.
Content
Magnetic, Superconducting and Electrical Materials (7L+ 1, Prof. J Durrell)
- Basics: Recap of magnetic and electrical fields in materials
(1L – flipped classroom: worksheet to study before lecture) - Magnetic Materials and Applications (2L);
- Superconducting Materials and Applications (2L);
- Electrical and Multi-ferroic Materials and Applications (2L);
- Guided Classwork Exercise and Superconductivity Demonstration (1L)
Optoelectronic materials and devices (7L + 1, Dr J Alexander-Webber
Setting the scene – Materials for digital technology and modern information society (1L)
Introduction to Modern Theory of Solids and Opto-Electronic Device Materials
- Bonds and Bands in Solids (1L)
- Mind the Gap: Semiconductors & Insulators (1L)
- From thin films to emerging nanomaterials (2L)
Material Challenges in Opto-Electronic Device Applications
- Interface is the Device: Very large scale integration (VLSI): CMOS technology (1L)
- Let there be light: light emitting diodes, lasers and display technology (1L)
- Guided Classwork Exercise and EE lab/clean room tour (1L)
Booklists
Coey J.M.D., ‘Magnetism and Magnetic Materials’, CUP (NA166).
Available online to CUED students [https://www.cambridge.org/core/books/magnetism-and-magnetic-materials/AD...
‘Superconductivity’. Poole (Elsevier)
Available online to CUED students: [https://cam.userservices.exlibrisgroup.com/view/action/uresolver.do?oper...
Braithwaite N. and Weaver G., ‘Electronic Materials’, Butterworths (JA179)
Ohring M., The Materials Science of Thin Films (JA204)
Kasap S.O., ‘Principles of Electronic Materials and Devices’, McGraw-Hill
Useful as a simple guide on quantum mechanics :
Allison J., ‘Electronic Engineering Semiconducting Devices’, McGraw-Hill (NR290)
Campbell S.A., ‘Science and Engineering of Microelectronic Fabrication’ (OUP)
Plummer J. D., Silicon VLSI technology (NQ79)
Dresselhaus et al., Topics in Applied Physics, Carbon Nanotubes, DOI: 10.1007/3-540-39947-X
Avouris et al., 2D Materials: Properties and Devices, https://doi.org/10.1017/9781316681619 (available online via UCam library)
Reference:
Kittel C., ‘Introduction to Solid State Physics’ (Wiley)
Elliott S.R., ‘Physics and Chemistry of Solids’ (Wiley)
Madou M. J., Fundamentals of Microfabrication (DM.7&8 Folio)
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 05/06/2025 16:33
Engineering Tripos Part IIB, 4C3: Advanced Functional Materials and Devices, 2019-20
Module Leader
Lecturers
Timing and Structure
Michaelmas term. 14 lectures + 2 Exercise Class/Lab Visit Sessions. Assessment: 100% exam.
Aims
The aims of the course are to:
- introduce a range of modern functional materials and devices emphasising their processing, properties and limitations.
- introduce principles to describe the origins of the electronic, optical, and magnetic properties of materials, and to explore structure-property relationships for bulk, thin film and nano-materials.
- discuss how these properties can be characterised and engineered for applications ranging from bulk superconductors to piezoelectric sensors, integrated CMOS, solid state lighting, displays and non-volatile memory.
- provide analysis of the key issues shaping the field and the key technologies reshaping society.
Objectives
As specific objectives, by the end of the course students should be able to:
- appreciate the range and diversity of modern functional materials.
- understand band diagrams and basic implications of quantum mechanics.
- understand qualitatively the origin of ferromagnetic and superconducting order in materials and how this results in useful materials properties.
- understand how extrinsic and intrinsic factors affect the performance of magnetic, superconducting and electrical materials.
- be able to apply their understanding of functional materials to making materials selection decisions.
- understand ferroic, non-linear response materials and the underlying phase transitions.
- understand interface behaviour and basic junctions as the basis for semiconductor device engineering.
- understand size-effects and how materials structure and properties can be controlled from the bulk to thin films and down to the nanoscale.
- understand manufacturing and characterisation requirements of these materials.
- identify current and future materials for a range of state-of-the-art sensor, integrated circuit, lighting, display and memory technologies.
Content
Magnetic, Superconducting and Electrical Materials (7L+ 1, Dr J Durrell and Dr M Ainslie)
- Basics: Recap of magnetic and electrical fields in materials
(1L – flipped classroom: worksheet to study before lecture) - Magnetic Materials and Applications (2L);
- Superconducting Materials and Applications (2L);
- Electrical and Multi-ferroic Materials and Applications (2L);
- Guided Classwork Exercise and Superconductivity Demonstration (1L)
Optoelectronic materials and devices (7L + 1, Prof S Hofmann)
- Bonds and Bands in Solids (1L)
- Mind the Gap: Semiconductors & Insulators (1L)
- Interface is the Device: from the field effect transistor to nano electromechanical systems (1L)
- Let there be light: light emitting diodes and solid-state lasers (1L)
- Displays and Large Area Electronic Materials (1L)
- Emerging nanomaterials – examples of novel metrology, process and device technology (2L)
- Guided Classwork Exercise and EE lab and clean room tour (1L)
Booklists
Coey J.M.D., ‘Magnetism and Magnetic Materials’, CUP (NA166).
Available online to CUED students [https://www.cambridge.org/core/books/magnetism-and-magnetic-materials/AD...
‘Superconductivity’. Poole (Elsevier)
Available online to CUED students: [https://cam.userservices.exlibrisgroup.com/view/action/uresolver.do?oper...
Braithwaite N. and Weaver G., ‘Electronic Materials’, Butterworths (JA179)
Ohring M., The Materials Science of Thin Films (JA204)
Kasap S.O., ‘Principles of Electronic Materials and Devices’, McGraw-Hill
Useful as a simple guide on quantum mechanics :
Allison J., ‘Electronic Engineering Semiconducting Devices’, McGraw-Hill (NR290)
Campbell S.A., ‘Science and Engineering of Microelectronic Fabrication’ (OUP)
Plummer J. D., Silicon VLSI technology (NQ79)
Dresselhaus et al., Topics in Applied Physics, Carbon Nanotubes, DOI: 10.1007/3-540-39947-X
Avouris et al., 2D Materials: Properties and Devices, https://doi.org/10.1017/9781316681619 (available online via UCam library)
Reference:
Kittel C., ‘Introduction to Solid State Physics’ (Wiley)
Elliott S.R., ‘Physics and Chemistry of Solids’ (Wiley)
Madou M. J., Fundamentals of Microfabrication (DM.7&8 Folio)
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 24/05/2019 09:36
Engineering Tripos Part IIB, 4C3: Advanced Functional Materials and Devices, 2018-19
Module Leader
Lecturers
Dr J Durrell, Dr S Hofmann, Dr M Ainslie
Timing and Structure
Michaelmas term. 14 lectures + 2 Exercise Class/Lab Visit Sessions. Assessment: 100% exam.
Aims
The aims of the course are to:
- introduce a range of modern functional materials and devices emphasising their processing, properties and limitations.
- introduce principles to describe the origins of the electronic, optical, and magnetic properties of materials, and to explore structure-property relationships for bulk, thin film and nano-materials.
- discuss how these properties can be characterised and engineered for applications ranging from bulk superconductors to piezoelectric sensors, integrated CMOS, solid state lighting, displays and non-volatile memory.
- provide analysis of the key issues shaping the field and the key technologies reshaping society.
Objectives
As specific objectives, by the end of the course students should be able to:
- appreciate the range and diversity of modern functional materials.
- understand band diagrams and basic implications of quantum mechanics.
- understand qualitatively the origin of ferromagnetic and superconducting order in materials and how this results in useful materials properties.
- understand how extrinsic and intrinsic factors affect the performance of magnetic, superconducting and electrical materials.
- be able to apply their understanding of functional materials to making materials selection decisions.
- understand ferroic, non-linear response materials and the underlying phase transitions.
- understand interface behaviour and basic junctions as the basis for semiconductor device engineering.
- understand size-effects and how materials structure and properties can be controlled from the bulk to thin films and down to the nanoscale.
- understand manufacturing and characterisation requirements of these materials.
- identify current and future materials for a range of state-of-the-art sensor, integrated circuit, lighting, display and memory technologies.
Content
Magnetic, Superconducting and Electrical Materials (7L+ 1, Dr J Durrell and Dr M Ainslie)
- Basics: Recap of magnetic and electrical fields in materials
(1L – flipped classroom: worksheet to study before lecture) - Magnetic Materials and Applications (2L);
- Superconducting Materials and Applications (2L);
- Electrical and Multi-ferroic Materials and Applications (2L);
- Guided Classwork Exercise and Superconductivity Demonstration (1L)
Optoelectronic materials and devices (7L + 1, Prof S Hofmann)
- Bonds and Bands in Solids (1L)
- Mind the Gap: Semiconductors & Insulators (1L)
- Interface is the Device: from the field effect transistor to nano electromechanical systems (1L)
- Let there be light: light emitting diodes and solid-state lasers (1L)
- Displays and Large Area Electronic Materials (1L)
- Emerging nanomaterials – examples of novel metrology, process and device technology (2L)
- Guided Classwork Exercise and EE lab and clean room tour (1L)
Booklists
Coey J.M.D., ‘Magnetism and Magnetic Materials’, CUP (NA166).
Available online to CUED students [https://www.cambridge.org/core/books/magnetism-and-magnetic-materials/AD...
‘Superconductivity’. Poole (Elsevier)
Available online to CUED students: [https://cam.userservices.exlibrisgroup.com/view/action/uresolver.do?oper...
Braithwaite N. and Weaver G., ‘Electronic Materials’, Butterworths (JA179)
Ohring M., The Materials Science of Thin Films (JA204)
Kasap S.O., ‘Principles of Electronic Materials and Devices’, McGraw-Hill
Useful as a simple guide on quantum mechanics :
Allison J., ‘Electronic Engineering Semiconducting Devices’, McGraw-Hill (NR290)
Campbell S.A., ‘Science and Engineering of Microelectronic Fabrication’ (OUP)
Plummer J. D., Silicon VLSI technology (NQ79)
Dresselhaus et al., Topics in Applied Physics, Carbon Nanotubes, DOI: 10.1007/3-540-39947-X
Avouris et al., 2D Materials: Properties and Devices, https://doi.org/10.1017/9781316681619 (available online via UCam library)
Reference:
Kittel C., ‘Introduction to Solid State Physics’ (Wiley)
Elliott S.R., ‘Physics and Chemistry of Solids’ (Wiley)
Madou M. J., Fundamentals of Microfabrication (DM.7&8 Folio)
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 22/05/2018 17:48
Engineering Tripos Part IIB, 4B13: Electronic Sensors & Instrumentation, 2018-19
Leader
Lecturer
Dr P Robertson
Timing and Structure
Lent term. 16 lectures (including examples classes). Assessment: 100% exam
Prerequisites
3B1 assumed.
Aims
The aims of the course are to:
- introduce students to state-of-the-art practice in electronic instrumentation systems, including the design of sensor/transducer elements for physical measureands, their respective interface electronics and precision measurement techniques.
Objectives
As specific objectives, by the end of the course students should be able to:
- design circuits to interface to simple temperature and strain measurement devices.
- demonstrate a knowledge of frequency sources and measurement circuits.
- measure high currents using 4 terminal devices and transformers.
- describe how micromachined silicon sensors are made, their operation and merits.
- describe a range of ultrasonic transducers, their applications and associated electronics.
- understand the operation of electromagnetic sensors for flux, current and position sensing.
- design and analyse sensor circuits and estimate signal to noise ratios.
- design an appropriate interface circuit for a sensor with given characteristics.
- produce an outline design of an instrumentation system to monitor a range of physical parameters including pressure, temperature, flow, position and velocity.
Content
Temperature & Strain Sensors and Interface Electronics (3L, Dr P A Robertson)
- Description of thermocouples, thermistors and strain gauges and associated electronics.
- Drift, noise and bandwidth considerations, signal to noise ratio improvement.
Precision Measurements (2L, Dr P A Robertson)
- Voltage measurements: thermal emfs, guarding, shielding. Precision ADC methods
- Time and frequency measurements: stable frequency sources, timer-counter techniques
- Current measurements: current transformers, 4-terminal measurements of high current
Electromagnetic devices (4L, Dr P A Robertson)
- Selected revision of electromagnetic theory and its application to electronic sensors.
- Flux gate, inductive and Hall effect magnetic devices and interface electronics.
- Synchronous detection method applied to fluxgate sensor.
- Laser range finder and velocity sensing
Microfabricated sensors (3L, Dr P A Robertson)
- Overview of silicon micromachining techniques and their application in accelerometers, gyroscopes, automotive air-bag sensors and pressure transducers. Physical priciples of operation and related signal processing electronics.
Ultrasonic transducers (3L, Dr P A Robertson)
- Description of piezo-electric devices, theory and application in practical sensor designs.
- Case studies of the Polaroid range finder, Doppler motion detector and an electronic gas meter.
- Electronic circuits for driving transducers and signal detection methods.
Practical Demonstration Lecture (1L, Dr P A Robertson)
- Evaluation of micromachined accelerometers and gyroscopes.
- Flux-gate magnetometer using synchronous detection
- Ultrasonic motion and distance sensing.
Booklists
Please see the Booklist for Group B Courses for references for this module.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 17/05/2018 13:49
Engineering Tripos Part IIB, 4B13: Electronic Sensors & Instrumentation, 2022-23
Leader
Lecturer
Dr P Robertson
Timing and Structure
Lent term. 16 lectures (including examples classes). Assessment: 100% exam
Prerequisites
3B1 assumed.
Aims
The aims of the course are to:
- introduce students to state-of-the-art practice in electronic instrumentation systems, including the design of sensor/transducer elements for physical measureands, their respective interface electronics and precision measurement techniques.
Objectives
As specific objectives, by the end of the course students should be able to:
- design circuits to interface to simple temperature and strain measurement devices.
- demonstrate a knowledge of frequency sources and measurement circuits.
- measure high currents using 4 terminal devices and transformers.
- describe how micromachined silicon sensors are made, their operation and merits.
- describe a range of ultrasonic transducers, their applications and associated electronics.
- understand the operation of electromagnetic sensors for flux, current and position sensing.
- design and analyse sensor circuits and estimate signal to noise ratios.
- design an appropriate interface circuit for a sensor with given characteristics.
- produce an outline design of an instrumentation system to monitor a range of physical parameters including pressure, temperature, flow, position and velocity.
Content
Temperature & Strain Sensors and Interface Electronics (3L, Dr P A Robertson)
- Description of thermocouples, thermistors and strain gauges and associated electronics.
- Drift, noise and bandwidth considerations, signal to noise ratio improvement.
Precision Measurements (2L, Dr P A Robertson)
- Voltage measurements: thermal emfs, guarding, shielding. Precision ADC methods
- Time and frequency measurements: stable frequency sources, timer-counter techniques
- Current measurements: current transformers, 4-terminal measurements of high current
Electromagnetic devices (4L, Dr P A Robertson)
- Selected revision of electromagnetic theory and its application to electronic sensors.
- Flux gate, inductive and Hall effect magnetic devices and interface electronics.
- Synchronous detection method applied to fluxgate sensor.
- Laser range finder and velocity sensing
Microfabricated sensors (3L, Dr P A Robertson)
- Overview of silicon micromachining techniques and their application in accelerometers, gyroscopes, automotive air-bag sensors and pressure transducers. Physical priciples of operation and related signal processing electronics.
Ultrasonic transducers (3L, Dr P A Robertson)
- Description of piezo-electric devices, theory and application in practical sensor designs.
- Case studies of the Polaroid range finder, Doppler motion detector and an electronic gas meter.
- Electronic circuits for driving transducers and signal detection methods.
Practical Demonstration Lecture (1L, Dr P A Robertson)
- Evaluation of micromachined accelerometers and gyroscopes.
- Flux-gate magnetometer using synchronous detection
- Ultrasonic motion and distance sensing.
Booklists
Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 24/05/2022 12:58
Engineering Tripos Part IIB, 4B13: Electronic Sensors & Instrumentation, 2020-21
Leader
Lecturer
Dr P Robertson
Timing and Structure
Lent term. 16 lectures (including examples classes). Assessment: 100% exam
Prerequisites
3B1 assumed.
Aims
The aims of the course are to:
- introduce students to state-of-the-art practice in electronic instrumentation systems, including the design of sensor/transducer elements for physical measureands, their respective interface electronics and precision measurement techniques.
Objectives
As specific objectives, by the end of the course students should be able to:
- design circuits to interface to simple temperature and strain measurement devices.
- demonstrate a knowledge of frequency sources and measurement circuits.
- measure high currents using 4 terminal devices and transformers.
- describe how micromachined silicon sensors are made, their operation and merits.
- describe a range of ultrasonic transducers, their applications and associated electronics.
- understand the operation of electromagnetic sensors for flux, current and position sensing.
- design and analyse sensor circuits and estimate signal to noise ratios.
- design an appropriate interface circuit for a sensor with given characteristics.
- produce an outline design of an instrumentation system to monitor a range of physical parameters including pressure, temperature, flow, position and velocity.
Content
Temperature & Strain Sensors and Interface Electronics (3L, Dr P A Robertson)
- Description of thermocouples, thermistors and strain gauges and associated electronics.
- Drift, noise and bandwidth considerations, signal to noise ratio improvement.
Precision Measurements (2L, Dr P A Robertson)
- Voltage measurements: thermal emfs, guarding, shielding. Precision ADC methods
- Time and frequency measurements: stable frequency sources, timer-counter techniques
- Current measurements: current transformers, 4-terminal measurements of high current
Electromagnetic devices (4L, Dr P A Robertson)
- Selected revision of electromagnetic theory and its application to electronic sensors.
- Flux gate, inductive and Hall effect magnetic devices and interface electronics.
- Synchronous detection method applied to fluxgate sensor.
- Laser range finder and velocity sensing
Microfabricated sensors (3L, Dr P A Robertson)
- Overview of silicon micromachining techniques and their application in accelerometers, gyroscopes, automotive air-bag sensors and pressure transducers. Physical priciples of operation and related signal processing electronics.
Ultrasonic transducers (3L, Dr P A Robertson)
- Description of piezo-electric devices, theory and application in practical sensor designs.
- Case studies of the Polaroid range finder, Doppler motion detector and an electronic gas meter.
- Electronic circuits for driving transducers and signal detection methods.
Practical Demonstration Lecture (1L, Dr P A Robertson)
- Evaluation of micromachined accelerometers and gyroscopes.
- Flux-gate magnetometer using synchronous detection
- Ultrasonic motion and distance sensing.
Booklists
Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 01/09/2020 10:26
Engineering Tripos Part IIB, 4B13: Electronic Sensors & Instrumentation, 2023-24
Leader
Lecturer
Timing and Structure
Lent term. 16 lectures (including examples classes). Assessment: 100% exam
Prerequisites
3B1 assumed.
Aims
The aims of the course are to:
- introduce students to state-of-the-art practice in electronic instrumentation systems, including the design of sensor/transducer elements for physical measureands, their respective interface electronics and precision measurement techniques.
Objectives
As specific objectives, by the end of the course students should be able to:
- design circuits to interface to simple temperature and strain measurement devices.
- demonstrate a knowledge of frequency sources and measurement circuits.
- measure high currents using 4 terminal devices and transformers.
- describe how micromachined silicon sensors are made, their operation and merits.
- describe a range of ultrasonic transducers, their applications and associated electronics.
- understand the operation of electromagnetic sensors for flux, current and position sensing.
- design and analyse sensor circuits and estimate signal to noise ratios.
- design an appropriate interface circuit for a sensor with given characteristics.
- produce an outline design of an instrumentation system to monitor a range of physical parameters including pressure, temperature, flow, position and velocity.
Content
Temperature & Strain Sensors and Interface Electronics (3L, Dr P A Robertson)
- Description of thermocouples, thermistors and strain gauges and associated electronics.
- Drift, noise and bandwidth considerations, signal to noise ratio improvement.
Electromagnetic devices (4L, Dr J Alexander-Webber)
- Selected revision of electromagnetic theory and its application to electronic sensors.
- Flux gate, inductive and Hall effect magnetic devices and interface electronics.
- Synchronous detection method applied to fluxgate sensor.
- Laser range finder and velocity sensing
Precision Measurements (2L, Dr P A Robertson)
- Voltage measurements: thermal emfs, guarding, shielding. Precision ADC methods
- Time and frequency measurements: stable frequency sources, timer-counter techniques
- Current measurements: current transformers, 4-terminal measurements of high current
Ultrasonic transducers (3L, Dr P A Robertson)
- Description of piezo-electric devices, theory and application in practical sensor designs.
- Case studies of the Polaroid range finder, Doppler motion detector and an electronic gas meter.
- Electronic circuits for driving transducers and signal detection methods.
Microfabricated sensors (3L, Dr P A Robertson)
- Overview of silicon micromachining techniques and their application in accelerometers, gyroscopes, automotive air-bag sensors and pressure transducers. Physical priciples of operation and related signal processing electronics.
Practical Demonstration Lecture (1L, Dr P A Robertson)
- Evaluation of micromachined accelerometers and gyroscopes.
- Flux-gate magnetometer using synchronous detection
- Ultrasonic motion and distance sensing.
Booklists
Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 12/12/2023 10:49
Engineering Tripos Part IIB, 4B13: Electronic Sensors & Instrumentation, 2017-18
Leader
Lecturer
Dr P Robertson
Timing and Structure
Lent term. 16 lectures (including examples classes). Assessment: 100% exam
Prerequisites
3B1 assumed.
Aims
The aims of the course are to:
- introduce students to state-of-the-art practice in electronic instrumentation systems, including the design of sensor/transducer elements for physical measureands, their respective interface electronics and precision measurement techniques.
Objectives
As specific objectives, by the end of the course students should be able to:
- design circuits to interface to simple temperature and strain measurement devices.
- demonstrate a knowledge of frequency sources and measurement circuits.
- measure high currents using 4 terminal devices and transformers.
- describe how micromachined silicon sensors are made, their operation and merits.
- describe a range of ultrasonic transducers, their applications and associated electronics.
- understand the operation of electromagnetic sensors for flux, current and position sensing.
- design and analyse sensor circuits and estimate signal to noise ratios.
- design an appropriate interface circuit for a sensor with given characteristics.
- produce an outline design of an instrumentation system to monitor a range of physical parameters including pressure, temperature, flow, position and velocity.
Content
Temperature & Strain Sensors and Interface Electronics (3L, Dr P A Robertson)
- Description of thermocouples, thermistors and strain gauges and associated electronics.
- Drift, noise and bandwidth considerations, signal to noise ratio improvement.
Precision Measurements (2L, Dr P A Robertson)
- Voltage measurements: thermal emfs, guarding, shielding. Precision ADC methods
- Time and frequency measurements: stable frequency sources, timer-counter techniques
- Current measurements: current transformers, 4-terminal measurements of high current
Electromagnetic devices (4L, Dr P A Robertson)
- Selected revision of electromagnetic theory and its application to electronic sensors.
- Flux gate, inductive and Hall effect magnetic devices and interface electronics.
- Synchronous detection method applied to fluxgate sensor.
- Laser range finder and velocity sensing
Microfabricated sensors (3L, Dr P A Robertson)
- Overview of silicon micromachining techniques and their application in accelerometers, gyroscopes, automotive air-bag sensors and pressure transducers. Physical priciples of operation and related signal processing electronics.
Ultrasonic transducers (3L, Dr P A Robertson)
- Description of piezo-electric devices, theory and application in practical sensor designs.
- Case studies of the Polaroid range finder, Doppler motion detector and an electronic gas meter.
- Electronic circuits for driving transducers and signal detection methods.
Practical Demonstration Lecture (1L, Dr P A Robertson)
- Evaluation of micromachined accelerometers and gyroscopes.
- Flux-gate magnetometer using synchronous detection
- Ultrasonic motion and distance sensing.
Booklists
Please see the Booklist for Group B Courses for references for this module.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 31/05/2017 10:00
Engineering Tripos Part IIB, 4B13: Electronic Sensors & Instrumentation, 2019-20
Leader
Lecturer
Dr P Robertson
Timing and Structure
Lent term. 16 lectures (including examples classes). Assessment: 100% exam
Prerequisites
3B1 assumed.
Aims
The aims of the course are to:
- introduce students to state-of-the-art practice in electronic instrumentation systems, including the design of sensor/transducer elements for physical measureands, their respective interface electronics and precision measurement techniques.
Objectives
As specific objectives, by the end of the course students should be able to:
- design circuits to interface to simple temperature and strain measurement devices.
- demonstrate a knowledge of frequency sources and measurement circuits.
- measure high currents using 4 terminal devices and transformers.
- describe how micromachined silicon sensors are made, their operation and merits.
- describe a range of ultrasonic transducers, their applications and associated electronics.
- understand the operation of electromagnetic sensors for flux, current and position sensing.
- design and analyse sensor circuits and estimate signal to noise ratios.
- design an appropriate interface circuit for a sensor with given characteristics.
- produce an outline design of an instrumentation system to monitor a range of physical parameters including pressure, temperature, flow, position and velocity.
Content
Temperature & Strain Sensors and Interface Electronics (3L, Dr P A Robertson)
- Description of thermocouples, thermistors and strain gauges and associated electronics.
- Drift, noise and bandwidth considerations, signal to noise ratio improvement.
Precision Measurements (2L, Dr P A Robertson)
- Voltage measurements: thermal emfs, guarding, shielding. Precision ADC methods
- Time and frequency measurements: stable frequency sources, timer-counter techniques
- Current measurements: current transformers, 4-terminal measurements of high current
Electromagnetic devices (4L, Dr P A Robertson)
- Selected revision of electromagnetic theory and its application to electronic sensors.
- Flux gate, inductive and Hall effect magnetic devices and interface electronics.
- Synchronous detection method applied to fluxgate sensor.
- Laser range finder and velocity sensing
Microfabricated sensors (3L, Dr P A Robertson)
- Overview of silicon micromachining techniques and their application in accelerometers, gyroscopes, automotive air-bag sensors and pressure transducers. Physical priciples of operation and related signal processing electronics.
Ultrasonic transducers (3L, Dr P A Robertson)
- Description of piezo-electric devices, theory and application in practical sensor designs.
- Case studies of the Polaroid range finder, Doppler motion detector and an electronic gas meter.
- Electronic circuits for driving transducers and signal detection methods.
Practical Demonstration Lecture (1L, Dr P A Robertson)
- Evaluation of micromachined accelerometers and gyroscopes.
- Flux-gate magnetometer using synchronous detection
- Ultrasonic motion and distance sensing.
Booklists
Please see the Booklist for Group B Courses for references for this module.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E2
Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
P1
A thorough understanding of current practice and its limitations and some appreciation of likely new developments.
P3
Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
US4
An awareness of developing technologies related to own specialisation.
Last modified: 23/05/2019 16:01
Engineering Tripos Part IIB, 4A10: Flow Instability, 2023-24
Module Leader
Lecturers
Prof G R Hunt and Prof M Juniper
Timing and Structure
Lent term. 16 lectures + examples class. Assessment: 100% exam
Prerequisites
3A1 assumed.
Aims
The aims of the course are to:
- develop physical insight into the unsteady behaviour of fluid flows through a range of practical examples, videos and demonstrations
- introduce flow effects not covered in the third year, such as/including the interaction between flexible structures and fluids, rotating flow and the effects of convection and surface tension.
Objectives
As specific objectives, by the end of the course students should be able to:
- understand that even a fluid flow with nominally steady boundary conditions may be unsteady due to flow instability
- analyse the stability of flows by determining whether small disturbances grow or decay with time
- understand how a liquid jet breaks up under the destabilising influence of surface tension
- analyse the stability of inviscid rotating flows
- be aware that concepts in modern nonlinear dynamics, including phase space diagrams and chaos, can be useful in the description of fluid flows
- analyse the instability of simple inviscid shear flows, including the effects of density stratification and surface tension, to discuss the effects of viscosity and the transition to turbulence
- understand the destabilising influence of convection in a fluid heated from below, be able to describe the cellular flow pattern formed (Bénard cells) and the effects of variations in surface tension
- discuss external flow around flexible structures
Content
Instability of fluid flows
- The break up of a liquid jet in air, surface tension effects, mean droplet size
- The stability of rotating flows: Rayleigh's criterion; flow between rotating cylinders; different flows according to parameter range, ranging from Taylor vortices to chaotic flow; relationship to streamwise vortices in boundary layers
- Shear flow instability, temporal and spatial; the Kelvin-Helmholtz instability; the effects of viscosity and transition to turbulence
- Convection due to surface heating, formation of cellular patterns, effect of variations in surface tension
- External flow, flow-induced oscillations of structures, control of oscillations by passive techniques
Booklists
Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
GT1
Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.
IA1
Apply appropriate quantitative science and engineering tools to the analysis of problems.
IA2
Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.
KU1
Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.
KU2
Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.
E1
Ability to use fundamental knowledge to investigate new and emerging technologies.
E3
Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.
US1
A comprehensive understanding of the scientific principles of own specialisation and related disciplines.
US3
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.
Last modified: 30/05/2023 15:24

