Undergraduate Teaching 2025-26

IA2

IA2

Not logged in. More information may be available... Login via Raven / direct.

Engineering Tripos Part IIB, 4E12: Project Management, 2018-19

Module Leader

Dr N Oraiopoulos

Lecturer

Dr N Oraiopoulos

Timing and Structure

Lent term. Eight 2-hour sessions + coursework. Assessment: 100% coursework (please see details below)

Aims

The aims of the course are to:

  • introduce the principal elements of project management; equipping students with the basic skills to enable them to manage a project and to operate effectively as part of a project team.

Objectives

As specific objectives, by the end of the course students should be able to:

  • use a set of tools and frameworks that enable effective project planning and execution.
  • understand the need for appropriate governance structures and control systems in the delivery of project objectives.
  • run a small scale project and to be an effective member of any project team.

Content

Session 1: Introduction to Project Management

  • Wide applicability of Project Management (PM)
  • Reasons why project fail
  • History of PM: Roots of change
  • Critical Path Method (CPM): Dragonfly Case - part 1

Session 2: Project Planning and Control

  • Beyond the CPM; the PERT method
  • EVA/ABC
  • Design Structure Matrix
  • Monte Carlo Simulation and Limitations
  • Dragonfly Case - part II

Session 3: Ambiguity in Large Innovative Projects

 

  • Flying Car Case
  • Managing Residual Uncertainty
  • Strategies for Managing Ambiguity
  • Stakeholder Management
  •  

Session 4: Project Risk Management

  • Intro to PM Risk Management
  • Review of decision trees
  • Real Options

Session 5: Managing Project Teams

  • In-class exercise
  • Heavyweight vs lightweight project managers
  • Functional vs. project-based organizations

Session 7: Portfolio Management

  • Scoring tables and financial indices: value and limitations
  • Risk return matrices and visual tools
  • Experimental evidence: collective bias

Session 8: Project Management Contracts

  • Fixed fee/Time and Materials/Performance-based contracts
  • Comparison and applicability of each contract type
  • Risk-sharing through optimal contract design
  • Barganining power and negotiations

Coursework

In-class individual case discussion contributions (20%), Group case write-up (20%), Coursework work individual (60%).

Coursework Format

Due date

& marks

Coursework activity #1:  Project Management Case Study

Coursework 1 brief description

You will be given a case and asked to analyse the risk management framework that the managers use to ensure a smooth transition of the IT operations. 

Learning objective:

  • Assess the Risk Management Framework and implementation in a large scale IT project
  • Develop contingency plans and mitigation techniques 
  • Develop recommendations to extend the existing framework 

 

Group Report 

anonymously marked

 

Beginning of Lecture 4

[12/60]

[Coursework activity #2 Project Prioritization and Analysis / Final]

Coursework 2 brief description

You will be given a case study and asked to analyse the risk profiles of different projects portfolios. You will have to make a recommendation regarding what projects should the company select and defend your recommendation with both quantitative and qualitative arguments. 

Learning objective:

  • Understand the complexity of project portfolio selection processes 
  • Analyze the organizational dynamics that affect project execution in project teams
  • Analyze how collaborative agreements and contracts can affect project performance 

Individual Report

anonymously marked

  Beginning of Easter Term

[36/60]

 

Booklists

Please see the Booklist for Group E Courses for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S2

Extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately to strategic and tactical issues.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P7

Awareness of quality issues.

 
Last modified: 25/05/2018 13:48

Engineering Tripos Part IIB, 4E12: Project Management, 2021-22

Module Leader

Dr N Oraiopoulos

Lecturer

Dr N Oraiopoulos

Timing and Structure

Lent term. Eight 2-hour sessions + coursework. Assessment: 100% coursework (please see details below)

Aims

The aims of the course are to:

  • introduce the principal elements of project management; equipping students with the basic skills to enable them to manage a project and to operate effectively as part of a project team.

Objectives

As specific objectives, by the end of the course students should be able to:

  • use a set of tools and frameworks that enable effective project planning and execution.
  • understand the need for appropriate governance structures and control systems in the delivery of project objectives.
  • run a small scale project and to be an effective member of any project team.

Content

Session 1: Introduction to Project Management

  • Wide applicability of Project Management (PM)
  • Reasons why project fail
  • History of PM: Roots of change
  • Critical Path Method (CPM): Dragonfly Case - part 1

Session 2: Project Planning and Control

  • Beyond the CPM; the PERT method
  • EVA/ABC
  • Design Structure Matrix
  • Monte Carlo Simulation and Limitations
  • Dragonfly Case - part II

Session 3: Ambiguity in Large Innovative Projects

 

  • Flying Car Case
  • Managing Residual Uncertainty
  • Strategies for Managing Ambiguity

Session 4: Project Risk Management

  • Intro to PM Risk Management
  • Review of decision trees
  • Real Options

Session 5: Managing Project Teams

  • In-class exercise
  • Heavyweight vs lightweight project managers
  • Functional vs. project-based organizations

Session 7: Portfolio Management

  • Scoring tables and financial indices: value and limitations
  • Risk return matrices and visual tools
  • The need for diversification in high risk projects

Session 8: Project Management Contracts

  • Fixed fee/Time and Materials/Performance-based contracts
  • Comparison and applicability of each contract type
  • Risk-sharing through optimal contract design
  • Barganining power and negotiations

Coursework

In-class individual case discussion contributions (20%), Individual Coursework  (80%).

Coursework Format

Due date

& marks

[Coursework activity: Project Prioritization and Analysis / Final]

Brief description

You will be given a case study and asked to analyse the risk profiles of different projects portfolios. You will have to make a recommendation regarding what projects should the company select and defend your recommendation with both quantitative and qualitative arguments. 

Learning objectives:

  • Understand the complexity of project portfolio selection processes 
  • Analyze the organizational dynamics that affect project execution in project teams
  • Analyze how collaborative agreements and contracts can affect project performance 

Individual Report

anonymously marked

  Beginning of Easter Term

 

 

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S2

Extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately to strategic and tactical issues.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P7

Awareness of quality issues.

 
Last modified: 24/05/2021 15:28

Engineering Tripos Part IIB, 4E12: Project Management, 2022-23

Module Leader

Dr N Oraiopoulos

Lecturer

Dr N Oraiopoulos

Timing and Structure

Lent term. Eight 2-hour sessions + coursework. Assessment: 100% coursework (please see details below)

Aims

The aims of the course are to:

  • introduce the principal elements of project management; equipping students with the basic skills to enable them to manage a project and to operate effectively as part of a project team.

Objectives

As specific objectives, by the end of the course students should be able to:

  • use a set of tools and frameworks that enable effective project planning and execution.
  • understand the need for appropriate governance structures and control systems in the delivery of project objectives.
  • run a small scale project and to be an effective member of any project team.

Content

Session 1: Introduction to Project Management

  • Wide applicability of Project Management (PM)
  • Reasons why project fail
  • History of PM: Roots of change
  • Critical Path Method (CPM): Dragonfly Case - part 1

Session 2: Project Planning and Control

  • Beyond the CPM; the PERT method
  • EVA/ABC
  • Design Structure Matrix
  • Monte Carlo Simulation and Limitations
  • Dragonfly Case - part II

Session 3: Ambiguity in Large Innovative Projects

 

  • Flying Car Case
  • Managing Residual Uncertainty
  • Strategies for Managing Ambiguity

Session 4: Project Risk Management

  • Intro to PM Risk Management
  • Review of decision trees
  • Real Options

Session 5: Managing Project Teams

  • In-class exercise
  • Heavyweight vs lightweight project managers
  • Functional vs. project-based organizations

Session 7: Portfolio Management

  • Scoring tables and financial indices: value and limitations
  • Risk return matrices and visual tools
  • The need for diversification in high risk projects

Session 8: Project Management Contracts

  • Fixed fee/Time and Materials/Performance-based contracts
  • Comparison and applicability of each contract type
  • Risk-sharing through optimal contract design
  • Barganining power and negotiations

Coursework

 Individual Coursework  (100%).

Coursework Format

Due date

& marks

[Coursework activity: Project Prioritization and Analysis / Final]

Brief description

You will be given a case study and asked to analyse the risk profiles of different projects portfolios. You will have to make a recommendation regarding what projects should the company select and defend your recommendation with both quantitative and qualitative arguments. 

Learning objectives:

  • Understand the complexity of project portfolio selection processes 
  • Analyze the organizational dynamics that affect project execution in project teams
  • Analyze how collaborative agreements and contracts can affect project performance 

Individual Report

anonymously marked

  Beginning of Easter Term

 

 

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S2

Extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately to strategic and tactical issues.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P7

Awareness of quality issues.

 
Last modified: 30/09/2022 10:07

Engineering Tripos Part IIB, 4E12: Project Management, 2019-20

Module Leader

Dr N Oraiopoulos

Lecturer

Dr N Oraiopoulos

Timing and Structure

Lent term. Eight 2-hour sessions + coursework. Assessment: 100% coursework (please see details below)

Aims

The aims of the course are to:

  • introduce the principal elements of project management; equipping students with the basic skills to enable them to manage a project and to operate effectively as part of a project team.

Objectives

As specific objectives, by the end of the course students should be able to:

  • use a set of tools and frameworks that enable effective project planning and execution.
  • understand the need for appropriate governance structures and control systems in the delivery of project objectives.
  • run a small scale project and to be an effective member of any project team.

Content

Session 1: Introduction to Project Management

  • Wide applicability of Project Management (PM)
  • Reasons why project fail
  • History of PM: Roots of change
  • Critical Path Method (CPM): Dragonfly Case - part 1

Session 2: Project Planning and Control

  • Beyond the CPM; the PERT method
  • EVA/ABC
  • Design Structure Matrix
  • Monte Carlo Simulation and Limitations
  • Dragonfly Case - part II

Session 3: Ambiguity in Large Innovative Projects

 

  • Flying Car Case
  • Managing Residual Uncertainty
  • Strategies for Managing Ambiguity
  • Stakeholder Management
  •  

Session 4: Project Risk Management

  • Intro to PM Risk Management
  • Review of decision trees
  • Real Options

Session 5: Managing Project Teams

  • In-class exercise
  • Heavyweight vs lightweight project managers
  • Functional vs. project-based organizations

Session 7: Portfolio Management

  • Scoring tables and financial indices: value and limitations
  • Risk return matrices and visual tools
  • Experimental evidence: collective bias

Session 8: Project Management Contracts

  • Fixed fee/Time and Materials/Performance-based contracts
  • Comparison and applicability of each contract type
  • Risk-sharing through optimal contract design
  • Barganining power and negotiations

Coursework

In-class individual case discussion contributions (20%), Group case write-up (20%), Coursework work individual (60%).

Coursework Format

Due date

& marks

Coursework activity #1:  Project Management Case Study

Coursework 1 brief description

You will be given a case and asked to analyse the risk management framework that the managers use to ensure a smooth transition of the IT operations. 

Learning objective:

  • Assess the Risk Management Framework and implementation in a large scale IT project
  • Develop contingency plans and mitigation techniques 
  • Develop recommendations to extend the existing framework 

 

Group Report 

anonymously marked

 

Beginning of Lecture 4

[12/60]

[Coursework activity #2 Project Prioritization and Analysis / Final]

Coursework 2 brief description

You will be given a case study and asked to analyse the risk profiles of different projects portfolios. You will have to make a recommendation regarding what projects should the company select and defend your recommendation with both quantitative and qualitative arguments. 

Learning objective:

  • Understand the complexity of project portfolio selection processes 
  • Analyze the organizational dynamics that affect project execution in project teams
  • Analyze how collaborative agreements and contracts can affect project performance 

Individual Report

anonymously marked

  Beginning of Easter Term

[36/60]

 

Booklists

Please see the Booklist for Group E Courses for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S2

Extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately to strategic and tactical issues.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P7

Awareness of quality issues.

 
Last modified: 28/05/2019 14:40

Engineering Tripos Part IIB, 4E12: Project Management, 2017-18

Module Leader

Dr N Oraiopoulos

Lecturer

Dr N Oraiopoulos

Timing and Structure

Lent term. Eight 2-hour sessions + coursework. Assessment: 100% coursework (please see details below)

Aims

The aims of the course are to:

  • introduce the principal elements of project management; equipping students with the basic skills to enable them to manage a project and to operate effectively as part of a project team.

Objectives

As specific objectives, by the end of the course students should be able to:

  • use a set of tools and frameworks that enable effective project planning and execution.
  • understand the need for appropriate governance structures and control systems in the delivery of project objectives.
  • run a small scale project and to be an effective member of any project team.

Content

Session 1: Introduction to Project Management

  • Wide applicability of Project Management (PM)
  • Reasons why project fail
  • History of PM: Roots of change
  • Critical Path Method (CPM): Dragonfly Case - part 1

Session 2: Project Planning and Control

  • Beyond the CPM; the PERT method
  • EVA/ABC
  • Design Structure Matrix
  • Monte Carlo Simulation and Limitations
  • Dragonfly Case - part II

Session 3: Ambiguity in Large Innovative Projects

 

  • Flying Car Case
  • Managing Residual Uncertainty
  • Strategies for Managing Ambiguity
  • Stakeholder Management
  •  

Session 4: Project Risk Management

  • Intro to PM Risk Management
  • Review of decision trees
  • Real Options

Session 5: Managing Project Teams

  • In-class exercise
  • Heavyweight vs lightweight project managers
  • Functional vs. project-based organizations

Session 7: Portfolio Management

  • Scoring tables and financial indices: value and limitations
  • Risk return matrices and visual tools
  • Experimental evidence: collective bias

Session 8: Project Management Contracts

  • Fixed fee/Time and Materials/Performance-based contracts
  • Comparison and applicability of each contract type
  • Risk-sharing through optimal contract design
  • Barganining power and negotiations

Coursework

In-class individual case discussion contributions (20%), Group case write-up (30%), Coursework work individual (50%).

Coursework Format

Due date

& marks

Coursework activity #1:  Project Management Case Study

Coursework 1 brief description

You will be given a case and asked to analyse the risk management framework that the managers use to ensure a smooth transition of the IT operations. 

Learning objective:

  • Assess the Risk Management Framework and implementation in a large scale IT project
  • Develop contingency plans and mitigation techniques 
  • Develop recommendations to extend the existing framework 

 

Group Report 

anonymously marked

 

Beginning of Lecture 4

[18/60]

[Coursework activity #2 Project Prioritization and Analysis / Final]

Coursework 2 brief description

You will be given a case study and asked to analyse the risk profiles of different projects portfolios. You will have to make a recommendation regarding what projects should the company select and defend your recommendation with both quantitative and qualitative arguments. 

Learning objective:

  • Understand the complexity of project portfolio selection processes 
  • Analyze the organizational dynamics that affect project execution in project teams
  • Analyze how collaborative agreements and contracts can affect project performance 

Individual Report

anonymously marked

  Beginning of Easter Term

[30/60]

 

Booklists

Please see the Booklist for Group E Courses for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S2

Extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately to strategic and tactical issues.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P7

Awareness of quality issues.

 
Last modified: 19/01/2018 16:34

Engineering Tripos Part IIB, 4E12: Project Management, 2023-24

Module Leader

Dr N Oraiopoulos

Lecturer

Dr N Oraiopoulos

Timing and Structure

Lent term. Eight 2-hour sessions + coursework. Assessment: 100% coursework (please see details below)

Aims

The aims of the course are to:

  • introduce the principal elements of project management; equipping students with the basic skills to enable them to manage a project and to operate effectively as part of a project team.

Objectives

As specific objectives, by the end of the course students should be able to:

  • use a set of tools and frameworks that enable effective project planning and execution.
  • understand the need for appropriate governance structures and control systems in the delivery of project objectives.
  • run a small scale project and to be an effective member of any project team.

Content

Session 1: Introduction to Project Management

  • Wide applicability of Project Management (PM)
  • Reasons why project fail
  • History of PM: Roots of change
  • Critical Path Method (CPM): Dragonfly Case - part 1

Session 2: Project Planning and Control

  • Beyond the CPM; the PERT method
  • EVA/ABC
  • Design Structure Matrix
  • Monte Carlo Simulation and Limitations
  • Dragonfly Case - part II

Session 3: Ambiguity in Large Innovative Projects

 

  • Flying Car Case
  • Managing Residual Uncertainty
  • Strategies for Managing Ambiguity

Session 4: Project Risk Management

  • Intro to PM Risk Management
  • Review of decision trees
  • Real Options

Session 5: Managing Project Teams

  • In-class exercise
  • Heavyweight vs lightweight project managers
  • Functional vs. project-based organizations

Session 7: Portfolio Management

  • Scoring tables and financial indices: value and limitations
  • Risk return matrices and visual tools
  • The need for diversification in high risk projects

Session 8: Project Management Contracts

  • Fixed fee/Time and Materials/Performance-based contracts
  • Comparison and applicability of each contract type
  • Risk-sharing through optimal contract design
  • Barganining power and negotiations

Coursework

 Individual Coursework  (100%).

Coursework Format

Due date

& marks

[Coursework activity: Project Prioritization and Analysis / Final]

Brief description

You will be given a case study and asked to analyse the risk profiles of different projects portfolios. You will have to make a recommendation regarding what projects should the company select and defend your recommendation with both quantitative and qualitative arguments. 

Learning objectives:

  • Understand the complexity of project portfolio selection processes 
  • Analyze the organizational dynamics that affect project execution in project teams
  • Analyze how collaborative agreements and contracts can affect project performance 

Individual Report

anonymously marked

  Beginning of Easter Term

 

 

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S2

Extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately to strategic and tactical issues.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P7

Awareness of quality issues.

 
Last modified: 30/05/2023 15:30

Engineering Tripos Part IIB, 4E12: Project Management, 2025-26

Module Leader

Dr N Oraiopoulos

Lecturer

Dr N Oraiopoulos

Timing and Structure

Lent term. Eight 2-hour sessions + coursework. Assessment: 100% coursework (please see details below)

Aims

The aims of the course are to:

  • introduce the principal elements of project management; equipping students with the basic skills to enable them to manage a project and to operate effectively as part of a project team.

Objectives

As specific objectives, by the end of the course students should be able to:

  • use a set of tools and frameworks that enable effective project planning and execution.
  • understand the need for appropriate governance structures and control systems in the delivery of project objectives.
  • run a small scale project and to be an effective member of any project team.

Content

Session 1: Introduction to Project Management

  • Wide applicability of Project Management (PM)
  • Reasons why project fail
  • History of PM: Roots of change
  • Critical Path Method (CPM): Dragonfly Case - part 1

Session 2: Project Planning and Control

  • Beyond the CPM; the PERT method
  • EVA/ABC
  • Design Structure Matrix
  • Monte Carlo Simulation and Limitations
  • Dragonfly Case - part II

Session 3: Ambiguity in Large Innovative Projects

 

  • Flying Car Case
  • Managing Residual Uncertainty
  • Strategies for Managing Ambiguity

Session 4: Project Risk Management

  • Intro to PM Risk Management
  • Review of decision trees
  • Real Options

Session 5: Managing Project Teams

  • In-class exercise
  • Heavyweight vs lightweight project managers
  • Functional vs. project-based organizations

Session 7: Portfolio Management

  • Scoring tables and financial indices: value and limitations
  • Risk return matrices and visual tools
  • The need for diversification in high risk projects

Session 8: Project Management Contracts

  • Fixed fee/Time and Materials/Performance-based contracts
  • Comparison and applicability of each contract type
  • Risk-sharing through optimal contract design
  • Barganining power and negotiations

Coursework

 Individual Coursework  (100%).

Coursework Format

Due date

& marks

[Coursework activity: Project Prioritization and Analysis / Final]

Brief description

You will be given a case study and asked to analyse the risk profiles of different projects portfolios. You will have to make a recommendation regarding what projects should the company select and defend your recommendation with both quantitative and qualitative arguments. 

Learning objectives:

  • Understand the complexity of project portfolio selection processes 
  • Analyze the organizational dynamics that affect project execution in project teams
  • Analyze how collaborative agreements and contracts can affect project performance 

Individual Report

anonymously marked

  Beginning of Easter Term

 

 

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S2

Extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately to strategic and tactical issues.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P7

Awareness of quality issues.

 
Last modified: 04/06/2025 13:28

Engineering Tripos Part IIB, 4E12: Project Management, 2024-25

Module Leader

Dr N Oraiopoulos

Lecturer

Dr N Oraiopoulos

Timing and Structure

Lent term. Eight 2-hour sessions + coursework. Assessment: 100% coursework (please see details below)

Aims

The aims of the course are to:

  • introduce the principal elements of project management; equipping students with the basic skills to enable them to manage a project and to operate effectively as part of a project team.

Objectives

As specific objectives, by the end of the course students should be able to:

  • use a set of tools and frameworks that enable effective project planning and execution.
  • understand the need for appropriate governance structures and control systems in the delivery of project objectives.
  • run a small scale project and to be an effective member of any project team.

Content

Session 1: Introduction to Project Management

  • Wide applicability of Project Management (PM)
  • Reasons why project fail
  • History of PM: Roots of change
  • Critical Path Method (CPM): Dragonfly Case - part 1

Session 2: Project Planning and Control

  • Beyond the CPM; the PERT method
  • EVA/ABC
  • Design Structure Matrix
  • Monte Carlo Simulation and Limitations
  • Dragonfly Case - part II

Session 3: Ambiguity in Large Innovative Projects

 

  • Flying Car Case
  • Managing Residual Uncertainty
  • Strategies for Managing Ambiguity

Session 4: Project Risk Management

  • Intro to PM Risk Management
  • Review of decision trees
  • Real Options

Session 5: Managing Project Teams

  • In-class exercise
  • Heavyweight vs lightweight project managers
  • Functional vs. project-based organizations

Session 7: Portfolio Management

  • Scoring tables and financial indices: value and limitations
  • Risk return matrices and visual tools
  • The need for diversification in high risk projects

Session 8: Project Management Contracts

  • Fixed fee/Time and Materials/Performance-based contracts
  • Comparison and applicability of each contract type
  • Risk-sharing through optimal contract design
  • Barganining power and negotiations

Coursework

 Individual Coursework  (100%).

Coursework Format

Due date

& marks

[Coursework activity: Project Prioritization and Analysis / Final]

Brief description

You will be given a case study and asked to analyse the risk profiles of different projects portfolios. You will have to make a recommendation regarding what projects should the company select and defend your recommendation with both quantitative and qualitative arguments. 

Learning objectives:

  • Understand the complexity of project portfolio selection processes 
  • Analyze the organizational dynamics that affect project execution in project teams
  • Analyze how collaborative agreements and contracts can affect project performance 

Individual Report

anonymously marked

  Beginning of Easter Term

 

 

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S2

Extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately to strategic and tactical issues.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P7

Awareness of quality issues.

 
Last modified: 31/05/2024 10:06

Engineering Tripos Part IIB, 4E12: Project Management, 2020-21

Module Leader

Dr N Oraiopoulos

Lecturer

Dr N Oraiopoulos

Timing and Structure

Lent term. Eight 2-hour sessions + coursework. Assessment: 100% coursework (please see details below)

Aims

The aims of the course are to:

  • introduce the principal elements of project management; equipping students with the basic skills to enable them to manage a project and to operate effectively as part of a project team.

Objectives

As specific objectives, by the end of the course students should be able to:

  • use a set of tools and frameworks that enable effective project planning and execution.
  • understand the need for appropriate governance structures and control systems in the delivery of project objectives.
  • run a small scale project and to be an effective member of any project team.

Content

Session 1: Introduction to Project Management

  • Wide applicability of Project Management (PM)
  • Reasons why project fail
  • History of PM: Roots of change
  • Critical Path Method (CPM): Dragonfly Case - part 1

Session 2: Project Planning and Control

  • Beyond the CPM; the PERT method
  • EVA/ABC
  • Design Structure Matrix
  • Monte Carlo Simulation and Limitations
  • Dragonfly Case - part II

Session 3: Ambiguity in Large Innovative Projects

 

  • Flying Car Case
  • Managing Residual Uncertainty
  • Strategies for Managing Ambiguity

Session 4: Project Risk Management

  • Intro to PM Risk Management
  • Review of decision trees
  • Real Options

Session 5: Managing Project Teams

  • In-class exercise
  • Heavyweight vs lightweight project managers
  • Functional vs. project-based organizations

Session 7: Portfolio Management

  • Scoring tables and financial indices: value and limitations
  • Risk return matrices and visual tools
  • The need for diversification in high risk projects

Session 8: Project Management Contracts

  • Fixed fee/Time and Materials/Performance-based contracts
  • Comparison and applicability of each contract type
  • Risk-sharing through optimal contract design
  • Barganining power and negotiations

Coursework

In-class individual case discussion contributions (5%), Group case write-up (30%), Coursework work individual (65%).

Coursework Format

Due date

& marks

Coursework activity #1:  Project Management Case Study

Coursework 1 brief description

You will be given a case and asked to analyse the risk management framework that the managers use to ensure a smooth transition of the IT operations. 

Learning objective:

  • Assess the Risk Management Framework and implementation in a large scale IT project
  • Develop contingency plans and mitigation techniques 
  • Develop recommendations to extend the existing framework 

 

Group Report 

anonymously marked

 

Beginning of Lecture 4

 

[Coursework activity #2 Project Prioritization and Analysis / Final]

Coursework 2 brief description

You will be given a case study and asked to analyse the risk profiles of different projects portfolios. You will have to make a recommendation regarding what projects should the company select and defend your recommendation with both quantitative and qualitative arguments. 

Learning objective:

  • Understand the complexity of project portfolio selection processes 
  • Analyze the organizational dynamics that affect project execution in project teams
  • Analyze how collaborative agreements and contracts can affect project performance 

Individual Report

anonymously marked

  Beginning of Easter Term

 

 

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

S1

The ability to make general evaluations of commercial risks through some understanding of the basis of such risks.

S2

Extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately to strategic and tactical issues.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

P7

Awareness of quality issues.

 
Last modified: 16/02/2021 06:35

Engineering Tripos Part IIB, 4E11: Strategic Management, 2022-23

Module Leader

Dr C Coleridge

Timing and Structure

Lent term. 8 sessions + coursework.

Aims

The aims of the course are to:

  • provide participants with an opportunity to discuss the strategic challenges facing managers in today’s business environment and to develop a facility for critical strategic thinking.

Objectives

As specific objectives, by the end of the course students should be able to:

  • show a critical, reflective approach to managerial concepts.
  • show familiarity with some of the key models used in strategic analysis.
  • show some understanding of these models' application and limitations.
  • show a broad overview of managerial disciplines and their interdependency.

Content

Strategic management involves the comprehensive analysis of a firm and its environment (strategy analysis), the development of an intended course of action for the firm (strategy formulation), and the execution of that intention (strategy execution). It is, therefore, a comprehensive topic drawing together themes from marketing, organisation design, economics, and other business disciplines. The primary aim of this module is to provide participants with an opportunity to discuss the strategic challenges facing managers in today’s business environment and to develop a facility for critical thinking about strategy and management. This will require participants not only to understand the course material, but also to apply it to business situations through the analysis of business cases in class. This overview of strategy will provide a broad framework for future management study, and a context for engineering practice.

Strategic Management

The lectures will cover a range of topics that provide a basic introduction to strategic management. In each session, the lecturer will introduce a basic concept and explain its role in the strategic management process. The class will then analyse a case or discuss the situation facing some well-known firm in order to explore the application of the concept. The module will cover eight topics.

  1. Course Introduction 
  2. Outside In or Inside Out?
  3. The Ecosystem Perspective
  4. Disruption and Continuous Renewal
  5. Strategy Formulation
  6. Strategy Execution
  7. Industry Evolution and Strategic Change
  8. Corporate Strategy and Wrapup

Coursework

Coursework Format

Due date

& marks

Coursework activity: Final

You will prepare a complete strategic analysis of the current and future prospects for a company of your choice. The paper should contain a comprehensive industry and market analysis, including a detailed analysis of relevant competitors, and conclude with strategic recommendations (including corporate and business strategies) for top management. The selection of companies for strategic analysis is entirely up to each student; however, firms in industries that are in transition or firms that are undergoing major strategic changes are potentially more suitable for analysis.

Learning objective:

  • To get a real life sense of strategy making and implementation by conducting a strategic analysis of an actual firm undergoing strategic challenges.
  • The aim is to apply the concepts of strategic management discussed in class (both external and internal analyses) to a real life situation and achieve a better understanding of the literature through application and learning by doing.

Grading criteria: 

  1. How insightful is your diagnosis and solution?
  2. How clearly have you articulated the key issue at hand. For instance, if you pick Vodafone, try to articulate why it faces the challenge you have identified, and what its implications are for its future.
  3. The originality and quality of your analysis. The point of the exercise is not to just cut and paste from existing articles that discuss your case. Can you bring better analytical skills to the case at hand? Can you make an original point about the nature of the challenge? Most analysis in the business press tends to be somewhat shallow. Try to rise above it using better analytical skills. 
  4. How well substantiated are your claims? Are your claims supported by evidence? 
  5. Finally, is it coherent and logical? We do not want analysis that is fragmented and contradicts itself. Try to make your essay coherent so it flows logically.

Individual

Essay of 2500 words

anonymously marked

20 March 2023, 4pm

[xx/60]

 

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

IA2

Demonstrate creative and innovative ability in the synthesis of solutions and in formulating designs.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

S2

Extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately to strategic and tactical issues.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

 
Last modified: 12/12/2022 13:59

Pages

Subscribe to IA2